CSCI 02
INTRO TO PROGRAMMING
WITH PYTHON

LECTURE 8
WARNING: ENGINEERING CONTENT
MICHAEL GROSSBERG
import pylab
import math

MAX_STEPS = 20
for index in range(0,MAX_STEPS):
 angle = 2.0*math.pi*index/MAX_STEPS
 pylab.plot([angle],[math.sin(angle)],'r.')

Little space at the top and bottom
pylab.ylim([-1.25,1.25])
pylab.show()
LIST ACCESS STARTS AT ZERO

-1 LAST ELEMENT

PAST LAST => ERROR

In [14]: x = [6,7,8,9] # setup list
In [15]: x[0] # first element
Out[15]: 6
In [16]: x[1] # second element
Out[16]: 7
In [17]: len(x)
Out[17]: 4
In [18]: x[-1] # last element
Out[18]: 9
In [19]: x[3] # also last because len=4
Out[19]: 9
In [20]: x[4] # index start from 0
IndexError: list index out of range
In [27]: x = [6,7,8,9] + range(0,5)
In [28]: print x
-------> print(x)
[6, 7, 8, 9, 0, 1, 2, 3, 4]
In [29]: x = [6,7,8,9];
In [30]: x.append(10)
In [31]: print(x)
[6, 7, 8, 9, 10]

In [32]: x = [6,7,8,9] + 10
TypeError: can only concatenate list (not "int") to list
In [33]: x = [6,7,8,9].append(10)
In [34]: print(x)
None

BUILD UP WITH APPEND
import pylab
import math

MAX_STEPS = 20
angles = []
for index in range(0,MAX_STEPS):
 angles.append(2.0*math.pi*index/MAX_STEPS)

ys = []
for angle in angles:
 ys.append(math.sin(angle))

pylab.plot(angles,ys,'b-')

Little space at the top and bottom
pylab.ylim([-1.25,1.25])
pylab.show()
LIST COMPREHENSIONS

```
angles = []
for index in range(0,MAX_STEPS):
    angles.append(2.0*math.pi*index/MAX_STEPS)
```

BECOMES

```
angles = [2.0*math.pi*index/MAX_STEPS
       for index in range(0,MAX_STEPS)]
```

USE WISELY

YOUNG JEDIS
THE EPITROCHOID

WANKEL ROTARY ENGINE

\[x = (a+b)\cos(\theta) - h\cos((a+b/b) \theta) \]
\[y = (a+b)\sin(\theta) - h\sin((a+b/b) \theta) \]
THE EPITROCHOID

import pylab
import math

LOOPS, MAX_STEPS = 10, 100

thetas = [2.0*math.pi*index/MAX_STEPS
 for index in range(0,LOOPS*MAX_STEPS)]

a, b, h = 2.0, 1.0, 0.5

xs = [(a+b)*math.cos(theta) -
 h*math.cos(((a+b)/b)*theta)
 for theta in thetas]

ys = [(a+b)*math.sin(theta) -
 h*math.sin(((a+b)/b)*theta)
 for theta in thetas]

pylab.plot(xs,ys,'r-')
pylab.show()
EPITROCHOIDS GONE WILD

\[a=3, b=1, h=.5 \]
\[a=3, b=1, h=8 \]
\[a=1, b=1, h=1 \]
3.7.1 Application to a Simple RC Circuit

The solution giving the voltage across the capacitor in Figure 3.2 following the closing of the switch can be written in the following form:

\[V_c(t) = V_c(0) \exp \left(-\frac{t}{RC} \right) + V_s \left[1 - \exp \left(-\frac{t}{RC} \right) \right] \]

(3.15)

\(V_c(t) \) is called the time response of the RC circuit, or the circuit output resulting from the constant input \(V_s \). The time constant \(RC \) of the circuit has the units of seconds and, as you will observe in the present analysis and other problems.

FIGURE 3.2
The circuit used in charging a capacitor.
WHAT HAPPENS TO THE CIRCUIT

```python
import pylab
import math

SAMPLES = 100.
Vc0, Vs, RC = 3., 10., 1.

times = [t/10.0 for t in range(SAMPLES)]

Vcs = [(Vc0*math.exp(-t/RC) +
       Vs*(1.-math.exp(-t/RC)))
       for t in times]

pylab.plot(times, Vcs, 'r')
pylab.show()
```
ALGORITHM

☐ Step by step description

☐ Nothing vague

☐ Good example: "Multiply previous answer by 10"

☐ Bad examples: "Get the answer", "Pick an easy number"
Paper Glider Directions

1. Fold down upper two corners.

2. Fold Paper in half-length wise.

3. Take outer two corners and fold like this:

4. Your glider should look like this.
SWAP X AND Y

- □ X = 5
- □ Y = 2
- □ SWAP X AND Y
 - □ Y = X FAIL!
 - □ LOST VALUE OF Y
- □ SWAP X AND Y (2)
 - □ Z = Y
 - □ Y = X
 - □ X = Z
 - □ DONE
 - □ Y == 2
 - □ X == 5
Babylonian method

Perhaps the first algorithm used for approximating \sqrt{S} is known as the "Babylonian method", named after the Babylonians,[1] or "Heron's method", named after the first-century Greek mathematician Hero of Alexandria who gave the first explicit description of the method.[2] It can be derived from (but predates) Newton's method. This is a quadratically convergent algorithm, which means that the number of correct digits of the approximation roughly doubles with each iteration. It proceeds as follows:

1. Begin with an arbitrary positive starting value x_0 (the closer to the root, the better).
2. Let x_{n+1} be the average of x_n and S / x_n (using the arithmetic mean to approximate the geometric mean).
3. Repeat step 2 until the desired accuracy is achieved.

It can also be represented as:

$$x_0 \approx \sqrt{S},$$
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right),$$
$$\sqrt{S} = \lim_{n \to \infty} x_n.$$

This algorithm works equally well in the p-adic numbers, but cannot be used to identify real square roots with p-adic square roots; it is easy, for example, to construct a sequence of rational numbers by this method that converges to $+3$ in the reals, but to -3 in the 2-adics.
STEPS

- GET FLOAT S FROM USER
- MAKE A GUESS OF SQUARE ROOT
- TO MAKE NEXT GUESS
 - DIVIDE S BY OLD GUESS AND
 - AVERAGE WITH OLD GUESS
- STOP WHEN NEW AND OLD GUESS REALLY CLOSE
 - THIS MEANS NO MORE PROGRESS
import math

S = float(input('Input a number for to take the square root: '))

threshold = 10.0**(-15)

old_guess = S
guess = S/2

while abs(guess-old_guess) > threshold:
 old_guess = guess
 guess = 0.5 *(old_guess + (S/old_guess))

print "Babylonian method square root estimate of", S,"is",
print guess
print "math.sqrt(" , S ,") = ",
print math.sqrt(S)
DECIMAL EXPANSION

$1345 = 1 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$

BINARY EXPANSION ... REPLACE WITH 10 WITH 2
BINARY EXPANSION

DEC 60 = 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0

= BIN 111100

<table>
<thead>
<tr>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Wednesday, September 29, 2010
BINARY IMPLEMENTATION

```python
user_number = int(input('Enter a number (pos. int): '))

number = user_number
bin_expansion = []

while number > 1:
    r = number % 2
    bin_expansion.append(r)
    number = number / 2
else:
    r = number % 2
    bin_expansion.append(r)

bin_string = ''
for bit in bin_expansion:
    bin_string = str(bit)+bin_string

print "dec: ", user_number, "bin: ", bin_string
```

Enter a number (pos. int): 60
dec: 60 bin: 111100
WHAT ABOUT OCTAL? BASE 8?

- IMPORTANT BASES FOR CS
 - BINARY (BASE 2) BIT
 - OCTAL (BASE 8)
 - HEXADECIMAL (BASE 16) 1/BYTE
 - CAN REPRESENT BYTE 0-255:
 - THATS 2 CHARs IN HEX
BUILT IN FUNCTIONS FOR THIS

In [115]: bin(60)
Out[115]: '0b111100'

In [116]: oct(60)
Out[116]: '074'

In [117]: int(074)
Out[117]: 60

In [118]: hex(60)
Out[118]: '0x3c'
POSSIBLE JOKE

why don't programmers know halloween from christmas?

dec 25 = oct 31