
CSC212
Data Structure

- Section FG

Lecture	21
Quadratic	Sorting

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

Quadratic	Sorting

•Chapter	13	presents	several	
common	algorithms	for	
sorting	an	array	of	integers.

• Two	slow	but	simple	
algorithms	are	Selectionsort
and	Insertionsort.

• This	presentation	
demonstrates	how	the	two	
algorithms	work.Data Structures

and Other Objects
Using C++

Sorting	an	Array	of	Integers

• The	picture	shows	
an	array	of	six	
integers	that	we	
want	to	sort	from	
smallest	to	largest

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• Start	by	finding	the	
smallest entry.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• Start	by	finding	the	
smallest entry.

• Swap	the	smallest	
entry	with	the	first	
entry.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• Start	by	finding	the	
smallest entry.

• Swap	the	smallest	
entry	with	the	first	
entry.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• Part	of	the	array	is	
now	sorted.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• Find	the	smallest	
element	in	the	
unsorted	side.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• Find	the	smallest	
element	in	the	
unsorted	side.

• Swap	with	the	
front	of	the	
unsorted	side.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• We	have	increased	
the	size	of	the	
sorted	side	by	one	
element.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• The	process	
continues...

Sorted side Unsorted side

Smallest
from

unsorted

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• The	process	
continues...

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• The	process	
continues...

Sorted side Unsorted side
Sorted side

is bigger

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• The	process	keeps	
adding	one	more	
number	to	the	sorted	
side.

• The	sorted	side	has	the	
smallest	numbers,	
arranged	from	small	to	
large.

Sorted side Unsorted side

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• We	can	stop	when	the	
unsorted	side	has	just	
one	number,	since	that	
number	must	be	the	
largest	number.

[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Selectionsort	Algorithm

• The	array	is	now	
sorted.

• We	repeatedly	selected
the	smallest	element,	
and	moved	this	
element	to	the	front	of	
the	unsorted	side.

[0] [1] [2] [3] [4] [5]

The	Selectionsort	Algorithm

• Question	1:
• Can	you	write	out	the	code?

• Question	2:
• What	is	the	Big-O	of	the	selectionsort	algorithm?

• Question	3:
• Best	case,	worst	case	and	average	case
• deterministic?

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• The	Insertionsort	
algorithm	also	
views	the	array	as	
having	a	sorted	
side	and	an	
unsorted	side.

[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• The	sorted	side	
starts	with	just	the	
first	element,	
which	is	not	
necessarily	the	
smallest	element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• The	sorted	side	
grows	by	taking	
the	front	element	
from	the	unsorted	
side...

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• ...and	inserting	it	
in	the	place	that	
keeps	the	sorted	
side	arranged	
from	small	to	
large.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• In	this	example,	
the	new	element	
goes	in	front	of	
the	element	that	
was	already	in	the	
sorted	side.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• Sometimes	we	are	
lucky	and	the	new	
inserted	item	
doesn't	need	to	
move	at	all.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

The	Insertionsort	Algorithm

• Sometimes	we	are	
lucky	twice	in	a	
row.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❶Copy	the	new	
element	to	a	
separate	location.	

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❷Shift	elements	in	
the	sorted	side,	
creating	an	open	
space	for	the	new	
element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❷Shift	elements	in	
the	sorted	side,	
creating	an	open	
space	for	the	new	
element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❷Continue	shifting	
elements...

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❷Continue	shifting	
elements...

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❷...until	you	reach	
the	location	for	
the	new	element.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6][1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

❸Copy	the	new	
element	back	into	
the	array,	at	the	
correct	location.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

How	to	Insert	One	Element

• The	last	element	
must	also	be	
inserted.	Start	by	
copying	it...

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

Sorted side Unsorted side

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

A	Quiz

How many shifts
will occur before we
copy this element
back into the array?

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

A	Quiz

• Four	items	are	
shifted.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[1] [2] [3] [4] [5] [6]

0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]

A	Quiz

• Four	items	are	
shifted.
•And	then	the	
element	is	copied	
back	into	the	
array.

[1] [2] [3] [4] [5] [6]
0

10

20

30

40

50

60

70

[1] [2] [3] [4] [5] [6]
[0] [1] [2] [3] [4] [5]

The	Insertionsort	Algorithm

• Question	1:
• Can	you	write	out	the	code	easily?

• Question	2:
• What	is	the	Big-O	of	the	insertsort	algorithm?

• Question	3:
• Best	case,	worst	case	and	average	case
• deterministic?

Timing	and	Other	Issues

•Both	Selectionsort	and	Insertionsort	have	a	worst-
case	time	of	O(n2),	making	them	impractical	 for	
large	arrays.

•But	they	are	easy	to	program,	easy	to	debug.
• Insertionsort	also	has	good	performance	when	the	
array	is	nearly	sorted	to	begin	with.

•But	more	sophisticated	sorting	algorithms	are	
needed	when	good	performance	is	needed	in	all	
cases	for	large	arrays.

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

