
@ Feng HU, 2016 1

CSC212
Data Structure

- Section RS

Lecture	18a
Trees,	Logs	and	Time	Analysis

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

@ Feng HU, 2016 2

Topics

• Big-O	Notation
• Worse	Case	Times	for	Tree	Operations
• Time	Analysis	for	BSTs
• Time	Analysis	for	Heaps
• Logarithms	and	Logarithmic	Algorithms

@ Feng HU, 2016 3

Big-O	Notation

• The	order	of	an	algorithm	generally	is	more	important	than	the	
speed	of	the	processor

Input size: n O(log n) O (n) O (n2)

of stairs: n [log10n]+1 3n n2+2n

10 2 30 120

100 3 300 10,200

1000 4 3000 1,000,2000

@ Feng HU, 2016 4

Worst-Case	Times	for	Tree	Operations

• The	worst-case	time	complexity	for	the	following	are	all	O(d),	where	d	=	the	
depth	of	the	tree:

• Adding	 an	entry	in	a	BST,	a	heap	or	a	B-tree;
• Deleting	an	entry	from	a	BST,	a	heap	or	a	B-tree;
• Searching	for	a	specified	entry	in	a	BST	or	a	B-tree.

• This	seems	to	be	the	end	of	our	Big-O	story...but

@ Feng HU, 2016 5

What’s	d,	then?

• Time	Analyses	for	these	operations	are	more	useful	if	they	are	given	
in	term	of	the	number	of	entries	(n)	instead	of	the	tree’s	depth	(d)

• Question:		
• What	is	the	maximum	depth	 for	a	tree	with	n	entries?

@ Feng HU, 2016 6

Time	Analysis	for	BSTs

• Maximum	depth	of	a	BST	with	n	entires:	n-1

❐An Example:
Insert 1, 2, 3,4,5 in
that order into a bag
using a BST

1

2

3

4

5

@ Feng HU, 2016 7

Worst-Case	Times	for	BSTs

• Adding,	deleting	or	searching	for	an	entry	in	a	BST	with	n	entries	 is	
O(d),	where	d	is	the	depth	of	the	BST

• Since	d	is	no	more	than	n-1,	the	operations	in	the	worst	case	is	(n-1).
• Conclusion:	the	worst	case	time	for	the	add,	delete	or	search	
operation	of	a	BST	is	O(n)

@ Feng HU, 2016 8

Time	Analysis	for	Heaps

• A	heap	is	a	complete	tree
• The	minimum	number	of	nodes	needed	for	a	heap	to	reach	depth	d	
is	2d	:

• =	(1	+	2	+	4	+	...	+	2d-1)	+	1
• The	extra	one	at	the	end	is	required	since	there	must	be	at	least	one	entry	in	
level	n

• Question:	how	to	add	up	the	formula?

@ Feng HU, 2016 9

Time	Analysis	for	Heaps

• A	heap	is	a	complete	tree
• The	minimum	number	of	nodes	needed	for	a	heap	to	reach	depth	d	
is	2d	:

• The	number	of	nodes	n	>=	2d

• Use	base	2	logarithms	on	both	side
• log2 n	>=	log2 2d	=	d
• Conclusion:	d	<=	log2 n

@ Feng HU, 2016 10

Worst-Case	Times	for	Heap	Operations

• Adding	or	deleting	an	entry	in	a	heap	with	n	entries	is	O(d),	where	d	
is	the	depth	of	the	tree

• Because	d	is	no	more	than	log2n,	we	conclude	that	the	operations	are	
O(log	n)

• Why	we	can	omit	the	subscript	2	?

@ Feng HU, 2016 11

Logarithms	(log)

•Base	10:	the	number	of	digits	in	n	is	[log10n]+1
• 100 =	1,						so	that	log10 1	=	0
• 101 =	10,				so	that	log10 10	=	1
• 101.5 =	32+,	so	that	log10 32	=	1.5
• 103 =	1000,	so	that	log10 1000	=	3

•Base	2:
• 20 =	1,										so	that	log2 1	=	0
• 21 =	2,										so	that	log2 2	=	1
• 23 =	8,										so	that	log2 8	=	3
• 25 =	32,								so	that	log2 32	=	5
• 210 =1024,				so	that	log2 1024	=	10

@ Feng HU, 2016 12

Logarithms	(log)

•Base	10:	the	number	of	digits	in	n	is	[log10n]+1
• 101.5 =	32+,	so	that	log10 32	=	1.5
• 103 =	1000,	so	that	log10 1000	=	3

•Base	2:
• 23 =	8,						so	that	log2 8	=	3
• 25 =	32,				so	that	log2 32	=	5

•Relation:	For	any	two	bases,	a	and	b,	and	a	positive	
number	n,	we	have
• logb n	=	(logb a)	loga n =	logb a(loga n)
• log2 n =	(log2 10)	log10 n	=	(5/1.5)	log10 n	=	3.3	log10 n

@ Feng HU, 2016 13

Logarithmic	Algorithms

• Logarithmic	algorithms	are	those	with	worst-case	
time	O(log	n),	such	as	adding	to	and	deleting	from	
a	heap

• For	a	logarithm	algorithm,	doubling	the	input	size	
(n)	will	make	the	time	increase	by	a	fixed	number	
of	new	operations

•Comparison	of	linear	and	logarithmic	algorithms
• n=	m		=	1	hour												->	log2m							» 6	minutes
• n=2m	=	2	hour												->	log2m	+	1	» 7	minutes
• n=8m	=	1	work	day					->	log2m	+	3	» 9	minutes
• n=24m	=	1	day&night	->	log2m	+	4.5	» 10.5	minutes

@ Feng HU, 2016 14

Summary

•Big-O	Notation	:
• Order	of	an	algorithm	versus	input	size	(n)

•Worse	Case	Times	for	Tree	Operations
• O(d),	d	=	depth	of	the	tree

• Time	Analysis	for	BSTs
• worst	case:	O(n)

• Time	Analysis	for	Heaps
• worst	case	O(log	n)	

• Logarithms	and	Logarithmic	Algorithms
• doubling	the	input	only	makes	time	increase	a	fixed	number

