
CSC212
Data Structure

- Section FG

Lecture	18
Heaps	and	Priority	Queues

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

Heaps

•Chapter	11	has	several	
programming	projects,	including	a	
project	that	uses	heaps.	

• This	presentation	shows	you	what	a	
heap	is,	and	demonstrates	two	of	
the	important	heap	algorithms.

Data Structures
and Other Objects
Using C++

Topics

•Heap	Definition
•Heap	Applications

• priority	queues	(chapter	8),	sorting	(chapter	13)	
• Two	Heap	Operations	– add,	remove

• reheapification	upward	and	downward
• why	is	a	heap		good	for	implementing	a	priority	queue?

•Heap	Implementation	
• using	binary_tree_node	class
• using	fixed	size	or	dynamic	arrays

Heaps	Definition

A	heap	is	a	certain	
kind	of	complete	
binary	tree.

Heaps

A	heap is	a	certain	
kind	of	complete	
binary	tree.

When a complete
binary tree is built,

its first node must be
the root.

Root

Heaps

Complete	binary	tree. Left child
of the
root

The second node is
always the left child

of the root.

Heaps

Complete	binary	tree. Right child
of the

root

The third node is
always the right child

of the root.

Heaps

Complete	binary	tree.

The next nodes
always fill the next

level from left-to-right.

Heaps

Complete	binary	tree.

The next nodes
always fill the next

level from left-to-right.

Heaps

Complete	binary	tree.

The next nodes
always fill the next

level from left-to-right.

Heaps

Complete	binary	tree.

The next nodes
always fill the next

level from left-to-right.

Heaps

Complete	binary	tree.

Heaps

A	heap	is	a	certain
kind	of	complete	
binary	tree.

Each node in a heap
contains a key that
can be compared to
other nodes' keys.

19

4222127

23

45

35

Heaps

A	heap	is	a	certain
kind	of	complete	
binary	tree.

The "heap property"
requires that each

node's key is >= the
keys of its children

19

4222127

23

45

35

What	it	is	not:	It	is	not	a	BST

• In	a	binary	search	tree,	the	entries	of	the	nodes	can	be	compared	
with	a	strict	weak	ordering.	Two	rules	are	followed	for	every	node	n:

• The	entry	in	node	n	is	NEVER	less	than an	entry	in	its	left	subtree
• The	entry	in	the	node	n	is	less	than every	entry	in	its	right	 subtree.

• BST	is	not	necessarily	a	complete	tree

What	it	is:	Heap	Definition

• A	heap	is	a	binary	tree	where	the	entries	of	the	nodes	can	be	
compared	with	the	less	than operator	of	a	strict	weak	ordering.	In	
addition,	two	rules	are	followed:

• The	entry	contained	by	the	node	is	NEVER	less	than the	entries	of	the	node’s	
children

• The	tree	is	a	COMPLETE	tree.

• Q:	where	is	the	largest	entry?	à for	what....

Application	:	Priority	Queues

• A	priority	queue	is	a	container	class	that	allows	entries	to	be	
retrieved	according	to	some	specific	priority	levels

• The	highest	priority	entry	is	removed	 first
• If	there	are	several	entries	with	equally	high	priorities,	 then	the	priority	
queue’s	 implementation	determines	which	will	come	out	first	(e.g.	FIFO)

• Heap	is	suitable	for	a	priority	queue

The	Priority	Queue	ADT	with	Heaps

• The	entry	with	the	highest	priority	is	always	at	the	
root	node

• Focus	on	two	priority	queue	operations
• adding	a	new	entry
• remove	the	entry	with	the	highest	priority

• In	both	cases,	we	must	ensure	the	tree	structure	
remains	to	be	a	heap
• we	are	going	to	work	on	a	conceptual	heap	without	
worrying	about	the	precise	implementation

• later	I	am	going	to	show	you	how	to	implement...

Adding	a	Node	to	a	Heap

❶ Put	the	new	node	in	the	
next	available	spot.

❷ Push	the	new	node	
upward,	swapping	with	
its	parent	until	the	new	
node	reaches	an	
acceptable	location.

19

4222127

23

45

35

42

Adding	a	Node	to	a	Heap

❶ Put	the	new	node	in	the	
next	available	spot.

❷ Push	the	new	node	
upward,	swapping	with	
its	parent	until	the	new	
node	reaches	an	
acceptable	location.

19

4222142

23

45

35

27

Adding	a	Node	to	a	Heap

❶ Put	the	new	node	in	the	
next	available	spot.

❷ Push	the	new	node	
upward,	swapping	with	
its	parent	until	the	new	
node	reaches	an	
acceptable	location.

19

4222135

23

45

42

27

Adding	a	Node	to	a	Heap

✔The	parent	has	a		key	that	
is	>=	new	node,	or

✔The	node	reaches	the	root.
➚ The	process	of	pushing	the	

new	node	upward							is	
called																							
reheapification
upward. 19

4222135

23

45

42

27

Note: Note: we need to easily go from
child to parent as well as parent to child.

Removing	the	Top	of	a	Heap

❶Move	the	last	node	onto	
the	root.

19

4222135

23

45

42

27

Removing	the	Top	of	a	Heap

❶Move	the	last	node	onto	
the	root.

19

4222135

23

27

42

Removing	the	Top	of	a	Heap

❶Move	the	last	node	onto	
the	root.

❷ Push	the	out-of-place	
node	downward,	
swapping	with	its	larger	
child	until	the	new	node	
reaches	an	acceptable	
location. 19

4222135

23

27

42

Removing	the	Top	of	a	Heap

❶Move	the	last	node	onto	
the	root.

❷ Push	the	out-of-place	
node	downward,	
swapping	with	its	larger	
child	until	the	new	node	
reaches	an	acceptable	
location. 19

4222135

23

42

27

Removing	the	Top	of	a	Heap

❶Move	the	last	node	onto	
the	root.

❷ Push	the	out-of-place	
node	downward,	
swapping	with	its	larger	
child	until	the	new	node	
reaches	an	acceptable	
location. 19

4222127

23

42

35

Removing	the	Top	of	a	Heap

✔The	children	all	have	
keys	<=	the	out-of-place	
node,	or

✔The	node	reaches	the	
leaf.

➘ The	process	of	pushing	
the	new	node				
downward	is	called																							
reheapification
downward.

19

4222127

23

42

35

Priority	Queues	Revisited

• A	priority	queue	is	a	container	class	that	allows	entries	to	be	
retrieved	according	to	some	specific	priority	levels

• The	highest	priority	entry	is	removed	 first
• If	there	are	several	entries	with	equally	high	priorities,	then	the	priority	
queue’s	implementation	determines	which	will	 come	out	first	(e.g.	FIFO)

• Heap	is	suitable	for	a	priority	queue

Adding	a	Node:	same	priority	

❶ Put	the	new	node	in	the	
next	available	spot.

❷ Push	the	new	node	
upward,	swapping	with	
its	parent	until	the	new	
node	reaches	an	
acceptable	location.

19

4222127

23

45

35

45*

Adding	a	Node	:	same	priority	

❶ Put	the	new	node	in	the	
next	available	spot.

❷ Push	the	new	node	
upward,	swapping	with	
its	parent	until	the	new	
node	reaches	an	
acceptable	location.

19

4222145*

23

45

35

27

Adding	a	Node	:	same	priority	

❶ Put	the	new	node	in	the	
next	available	spot.

❷ Push	the	new	node	
upward,	swapping	with	
its	parent	until	the	new	
node	reaches	an	
acceptable	location.

19

4222135

23

45

45*

27

Adding	a	Node	:	same	priority	

✔The	parent	has	a		key	that	
is	>=	new	node,	or

✔The	node	reaches	the	root.
➚ The	process	of	pushing	the	

new	node	upward							is	
called																							
reheapification
upward. 19

4222135

23

45

45*

27

Note: Implementation determines which 45
will be in the root, and will come out first
when popping.

Removing	the	Top	of	a	Heap

✔The	children	all	have	keys	
<=	the	out-of-place	node,	
or

✔The	node	reaches	the	leaf.
➘ The	process	of	pushing	the	

new	node				downward	is	
called																							
reheapification
downward. 19

4222127

23

45*

35

Note: Implementation determines which 45
will be in the root, and will come out first
when popping.

Heap	Implementation

• Use	binary_tree_node	class	
• node	 implementation	 is	for	a	general	binary	tree
• but	we	may	need	to	have	doubly	 linked	node

• Use	arrays	(page	475)
• A	heap	is	a	complete	binary	tree
• which	can	be	implemented	more	easily	with	an	array	than	with	the	node	
class

• and	do	two-way	links

Formulas	for	location	children	and	parents	in	an	
array	representation	

• Root	at	location	[0]
• Parent	of	the	node	in	[i]	is	at	[(i-1)/2]
• Children	of	the	node	in	[i]	(if	exist)	is	at	[2i+1]	and	[2i+2]
• Test:

• complete	tree	of	10,	000	nodes
• parent	of	4999	is	at	(4999-1)/2	=	2499
• children	of	4999	is	at	9999	(V)	and	10,000	(X)

Implementing	a	Heap

• We	will	store	the	data	
from	the	nodes	in	a	
partially-filled	array.

An array of data

2127

23

42

35

Implementing	a	Heap

• Data	from	the	root	goes	in	
the first														location																	
of	the															array.

An array of data

2127

23

42

35

42

Implementing	a	Heap

• Data	from	the	next	row	
goes in	the	next	two	array	
locations.																		

An array of data

2127

23

42

35

42 35 23

Implementing	a	Heap

• Data	from	the	next	row	
goes in	the	next	two	array	
locations.																		

An array of data

2127

23

42

35

42 35 23 27 21

Implementing	a	Heap

• Data	from	the	next	row	
goes in	the	next	two	array	
locations.																		

An array of data

2127

23

42

35

42 35 23 27 21

We don't care what's in
this part of the array.

Important	Points	about	the	Implementation

• The	links	between	the	tree's	
nodes	are	not actually	stored	as	
pointers,	or	in	any	other	way.

• The	only	way	we	"know"	that	
"the	array	is	a	tree"	is	from	the	
way	we	manipulate	the	data.

An array of data

2127

23

42

35

42 35 23 27 21

Important	Points	about	the	Implementation

• If	you	know	the	index	of	a	node,	
then	it	is	easy	to	figure	out	the	
indexes	of	that	node's	parent	
and	children.	Formulas	are	given	
in	the	book.

[0] [1] [2] [3] [4]

2127

23

42

35

42 35 23 27 21

Formulas	for	location	children	and	parents	in	an	
array	representation	

• Root	at	location	[0]
• Parent	of	the	node	in	[i]	is	at	[(i-1)/2]
• Children	of	the	node	in	[i]	(if	exist)	is	at	[2i+1]	and	[2i+2]
• Test:

• complete	tree	of	10,	000	nodes
• parent	of	4999	is	at	(4999-1)/2	=	2499
• children	of	4999	is	at	9999	(V)	and	10,000	(X)

Wrap	Up...

• Can	you	implement	 the	add	and	remove	
with	the	knowledge	of		these	formulas?

• Add
• put	the	new	entry	in	the	last	location
• Push	the	new	node	upward,	
swapping	with	its	parent	until	the	
new	node	reaches	an	acceptable	
location

• Remove
• move	the	last	node	to	the	root
• Push	the	out-of-place	node	
downward,	swapping	with	its	 larger	
child	until	the	new	node	reaches	an	
acceptable	 location

class heap
{
public:

....
void push(const Item& entry); // add
Item& pop(); // remove the highest

private:
Item data[CAPACITY];
size_type used;

}

Wrap	Up...

• Can	you	implement	 the	add	and	
remove	with	the	knowledge	of		
these	formulas?

• Add	(in-class	quiz)
• put	the	new	entry	in	the	last	
location

• Push	the	new	node	upward,	
swapping	with	its	parent	until	
the	new	node	reaches	an	
acceptable	 location

• Remove	(in-class	quiz)
• move	the	last	node	to	the	root
• Push	the	out-of-place	node	
downward,	swapping	with	its	
larger	child	until	the	new	node	
reaches	an	acceptable	location

template <class Item>
class heap
{
public:

heap () { used = 0;}
void push(const Item& entry); // add
Item& pop(); // remove the highest
size_t parent (size_t k) const { return (k-1)/2;}
size_t l_child (size_t k) const { return 2*k+1;}
size_t r_child (size_t k) const { return 2*k+2;}

private:
Item data[CAPACITY];
size_type used;

}

Summary

•A	heap	is	a	complete	binary	tree,	where	the	entry	at	
each	node	is	greater	than	or	equal	to	the	entries	in	
its	children.

• To	add	an	entry	to	a	heap,	place	the	new	entry	at	
the	next	available	spot,	and	perform	a	
reheapification	upward.

• To	remove	the	biggest	entry,	move	the	last	node	
onto	the	root,	and	perform	a	reheapification	
downward.

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

