COMPUTER SCIENCE
28D vy CoLLEGE OF NEW YORK

CSC212
Data Structure
- Section FG

Lecture 16
Binary Search Trees

Instructor: Feng HU
Department of Computer Science

City College of New York



ry Search Trees

* One of the tree applications in
Chapter 10 is :
* In Chapter 10, binary search trees
are used to implement bags and
.y sets.

e This presentation illustrates how
another data type called a
is implemented with
binary search trees.




Binary Search Tree Definition

* In a binary search tree, the entries of the nodes can be compared
with a strict weak ordering. Two rules are followed for every node n:
* The entry in node nis NEVER less than an entry in its left subtree
* The entry in the node n is less than every entry in its right subtree.



The Dictionary Data Type

* A dictionary is a collection of
items, similar to a bag.

* But unlike a bag, each item
has a string attached to it,
called the item's key.




The Dictionary Data Type

* A dictionary is a collection of
items, similar to a bag.

* But unlike a bag, each item
has a string attached to it,
called the item's key.

Example:
The items | am
storing are records
containing data
about a state.




The Dictionary Data Type

* A dictionary is a collection of
items, similar to a bag.

* But unlike a bag, each item
has a string attached to it,
called the item's key.

Example:
The key for each
record is the name
of the state.




The Dictionary Data Type

A

void Dictionary::insert(1he key for the new item, The new item);

* The insertion procedure for a
dictionary has two
parameters.



The Dictionary Data Type

 When you want to retrieve an
item, you specify the

A

Item Dictionary::retrieve(

SV




The Dictionary Data Type

7 When you want to retrieve an
item, you specify the key...
... and the retrieval procedure
returns the item.




The Dictionary Data Type

* We'll look at how a binary
tree can be used as the
internal storage mechanism
for the dictionary.




A Binary Search Tree of States

The data in the
dictionary will | | —
be stored in a Colorado Oklahoma
binary tree, | | e
with each node v
. N | & P
containing an Y arizona. ass 4
and a . f L \Wgsh/jggtﬂ
—~ .
e ‘i}y «/2 a
Arkansas, 4
)JK

>



A Binary Search Tree of States

=

eV

Storage rules:
@ Every key to the | ——

of anodeis Colorado
alphabetically |

the key of the node. | _ -

Oklahoma

o
SR ~

¥ | ‘Mass.' . | \
" Arizona ' \}7 N |
[ | ~ Washington
o _ \‘ \ \ /
12
=N ,
= 58 e\
Arkansas / i 2
/
J

>



A Binary Search Tree of States

Storage rules:

® Every key to the of |
a nodeiis Colorado
alphabetically | |
the key of the node.

|
"

%AﬂzonaE

I |

Example: .
' Massachusetts' and

' New Hampshire' -

are alphabetically AREIEE S

e

%

before 'Oklahoma’ 4

(
\i?{%
\§
L
Oklahoma
M
A ~
‘,l K
aanl \¥‘n
Mass. . \ \/
Ao I 2
" Washington
et

New
\\

West ®
Virginia
o



A Binary Search Tree of States

Storage rules: =
O Every key to the of | —
a nodeiis Colorado Oklahoma
alphabetically | N
the key of the node. | - )
?‘/ ] ass.’, . L
® Every key to the greons © Washington_
of anode is e P
alphabetically It .
B zz dg
the key of the node. Arkansas il

/
>



A Binary Search Tree of States

Storage rules: =
O Every key to the of | —
a nodeiis Colorado Oklahoma
alphabetically | N
the key of the node. | - )
?‘/ ] ass.’, . L
® Every key to the greons © Washington_
of anode is e P
alphabetically It .
2 250 L
the key of the node. { Arkansas. %
2

>
4



Retrieving Data

Start at the root.

@ If the currentnode has |
the key, then stop and Colorado
retrieve the data. |

@ |If the currentnode's |
key iS tOO ’ move %Arizona
and repeat 1-3.

O If the currentnode's
key is too , move Arkansas
and repeat 1-3. 4

A

| —

—P
AN
\1‘7{%
&
L
Oklahoma
A
B <
\
-/ \Q\K
MaSS.[ 5 \ \ ///[
e \//\ (3
~ Washington
(U <
o
i
i AR
25



Retrieve ' New Hampshire'

B
Start at the root. o
@ If the currentnode has | —
the key, then stop and  Colorado Oklahoma
retrieve the data. N
® If the currentnode's . T\&
key is too , move |, Aizona * Washington
and repeat 1-3. — P
© If the currentnode's | N L A\
' x I Vo2
key is too , move Arkansas ‘8

e

and repeat 1-3. :

>



Retrieve 'New Hampshire'

i’%‘ \
Start at the root. ®
@ If the currentnode has |
the key, then stop and  colorado Oklahoma
retrieve the data. N
® If the currentnode's . T\&
key is too , move |, Aizona " Washington
and repeat 1-3. P
©® |If the currentnode's N L Y
: | > N
key is too , move Arkansas ‘B2
and repeat 1-3. S



Retrieve 'New Hampshire'

i’%‘ \
Start at the root. ®
@ If the currentnode has —
the key, then stop and  colorado Oklahoma
retrieve the data. AN
® If the currentnode's . T\&
key is too , move | Aizona K- 7. Washington,
and repeat 1-3. P
O If the current node's | - i )
. | . Z3 L
key is too , move Arkansas ‘B2
and repeat 1-3. S



Retrieve 'New Hampshire'

i’%‘ \
Start at the root. ™
@ If the currentnode has —
the key, then stop and  Colorado Oklahoma
retrieve the data. N
® If the currentnode's . T\&
key is too , move |, Aizona " Washington
and repeat 1-3. — .
® If the current node's - ﬁ;j )
i | 4 | o
key is too , move Arkansas e

e

and repeat 1-3. :

>



Adding a New ltem with a
Given Key

® Pretend that you are
trying to find the key,
but stop when there s
no node to move to.

® Addthe newnode at

the spot whereyou  arizona
would have movedto
if there had been a

node. | =

Arkansas:
J

.

‘w“CoIorado“;

N
1\""“\ 7
&
L
Oklahoma
M
T A s ~
\
____ \Q\K
Mass." . ., \ b
~ Washington
e
o
i
13 J\
2s



Add | ng \ lowa

¢

® Pretend that you are
trying to find the key,
but stop when there s
no node to move to.

® Add the newnode at | |
the spot where you | Arizona
would have movedto

if there had been a

node. | =

Arkansas:
J

.

‘w“CoIorado“;

—P
AN
\1‘7{%
&
L
Oklahoma
A
T A s <
\
-/ \Q\K
Mass. . . N L
e \//\ (3
~ Washington
ot
o
I3
35 AR
4



Add | ng \ lowa

B
® Pretend that you are e
trying to find the key, | |
but stop when thereis | Oklahoma
'Colorado
no node to move to. | | R
@ Add the new node at - -
o~ | ‘Mass.". | \ Al
A | u/;\ - \ 2
the spot whereyou  Arizona © 7 Washington.

would have movedto™

if there had been a i
nOde. | ‘\; ‘QJNZ

Arkansas:
J

e

A
>

rginia

West *
Vir



Add | ng \ lowa

® Pretend that you are W
trying to find the key,
but stop when thereis  cyorads Oklahoma
no node to move to. | | hane oo
® Addthe newnodeat . /- - -
¥ | ‘Mass." | r
the spot where you Aizona AT
would have movedto SR
if there had been a i
Arkansas Y 4

e



Add | ng \ lowa

¢

® Pretend that you are
trying to find the key,
but stop when there s
no node to move to.

® Add the newnode at | |
the spot where you | Arizona
would have movedto

if there had been a

node. | =

Arkansas:
J

.

‘w“CoIorado“;

P
AN
\\i?{%
\y
L
Oklahoma
A
T A s <
‘,\ k
Q
-l \¥kﬁ
Mass. . \ \/
" Washington
T
o
i
35 AR
25



Add | ng \ lowa

® Pretend that you are W
trying to find the key, | | —
but stop when thereis a0 Okiahoma
no node to move to. | | e
® Add the new node at | - -
u | Mass.". \ \ 1
the spot where you Aizona Pra s Lo
would have movedto & - OER
if there had been a i
Arkansas Y 4

e




Adding

@ Pretend that you are W
trying to find the key, | |
but stop when thereis a0 Okianoma
no node to move to. | | RN
® Add the newnode at | - -
v | ‘Mass. . ¥
the spot where you Aizona C 5 eshingen
would have movedto —_— - R
if there had been a - @\
Arkansa§ y -

e



|

[

( e

Y A

Oklahoma

Colorado
| RN
J \
| S 4\
| ‘Mass." /)
o L

N
[

—

f |
" Arizona \" [ |
{ “ ~ Washington
N ‘ \ o
- |
| ( 1 al
" lowa £
e g
£,
- = p A
:Jf B8 :
Arkansasf \gg

. 4



Adding

\ \»LJ

\)0

i
PN

/f\

)

Colorado\\ oKlahoms
0 _—

| X -
ﬁZ }
\ iC )
| ‘Mass. . -/

o L

f |
" Arizona

\
[

{ " Washington
A~ ‘ \ \ N
. |
| { : 4
" lowa 2
) 2
§5
- ZI s v
> -
Arkansasy -

]



Removing an ltem with a  Given Key

® Find the item.
® If necessary, swap the ——
item with one that is Colorado Oklahoma
easier to remove. N
® Removethe item. | .
~ Arizona 5 L 2 _
{ | - Washington
\{ lowa 5\ \g
S 22 AW
' Arkansas. I WA g2
A -~ ‘
. 4 / 76_ % S \



Removing "Florida’

Gy a2 4\I
B
the item. )

B o

| |
| |
'Colorado o
“ | A
‘ S ~
\
J | ol Wi
\ | Mass! |4
" Arizona Ve 2 .
\ “ Washington
¢ | o
‘\¥ /’V
lowa * :
2 E, |
O @ "
\ 2 ZT /2 2
| , . ‘85
| { 3 . =4
ArkanSaS/ N Ny -

o fs Q \
\W ’ /7 Rty



Removing 'Florida’

Colorado‘\ ol

| /\\ b
A—Z MaSSJ(/t) ¥\‘L
\ 2N | 4

Arlzonaw A /

‘ = % Washlngton

R lowa é’

) L&

Arkansas, [ .
/ J /ra?e '\
’ : Gllf

[
:
.
\Qrgl nia

W West




Removing 'Florida’

Oklahoma

/;
| / o X B
A—Z Mass. W
| | /7
'Lgi\‘ L/‘\ %(

~ Washington

~ Arizona’
|

|
N |
| |
/
o
g
15
zz g/
M
\2F

]



Removing 'Florida’

Colorado‘\ N
| / o \ h
J—Z Mass. . ¥\\
{ N \ 2(
g ,
=

Ar ona‘
- Washlngton
;,‘5 Ig
35

Arkansas i1 g o
L \

\Qrgl nia

[
;
~
W West




Removing 'Florida’

\— |
Oklahoma

Colorado\

Ar|zona |

-

Arkansas /

¥\\

| 4

& . Washlngton

\4

T 5
Work for

multi-cet?



Removing 'Florida’

m Oklahoma
N

J
~ Arizona’ x L\
| ton

{ ‘ ~ r ' Washing
\ lowa \“ (;é
) 2y

. 13 .

zz o
\’/) %
~___ h \g/

ginia

Arkansas £ =
4 S /re?e,e '\
s,

. ‘ V4 7_ V
s




Removing 'Florida’

CoIorado“\ Oklahoma
| N
\ N
/ 3\
‘ ~L ¢
! | Mass. \ 2(
* Arizona e = _
| "~ Washington
N | LR Y
i N , N\
1 &
Arkansas; : §§
J ~

A




Removing 'Florida’

Colorado Oklahoma

/J\ -
/X T~
‘Mass. | \

/A
Arlzona %Ti' / J
g | Washlngton
| /ra? al
T o
o
S K’_\\] @Jc%}
" 4 Jiee E A
Arkansas: §§3




Removing 'Florida’

L

Colorado\\ owiahoma

i*i Arizona‘\ [
| 2 : Washington

N

\/‘ -
ampshire Y

~

M

rginia

g

Y

Arkansasf =




Removing 'Florida’

Colorado\\ Oklahoma

hZ ¥\\

ass \ 2(
Ar|zona / A- ? . Washlngton

o
i
e - :
- 4 @J‘“} m V
"B5
Arkansas; =
J /

e



Removing an ltem with a  Given Key

@ Find the item.

® If the item has a right child, rearrange the
tree:
* Find smallest item in the right subtree

e Copy that smallest item onto the one that you
want to remove

* Remove the extra copy of the smallest item
(making sure that you keep the tree connected)

else just remove the item.



ogmmary

* Binary search trees are a good implementation of
data types such as sets, bags, and dictionaries.

* Searching for an item is generally quick since you
move from the root to the item, without looking at
many other items.

* Adding and deleting items is also quick.

* But as you'll see later, it is possible for the quickness
to fail in some cases -- can you see why?



Assignment

e Read Section 10.5

* Assignment 6 — Bag class with a BST

* Memeber functions

* void insert(const ltem& entry);

* size_type count (const ltem& target);
* Non-member functions

* viod bst_remove_all(binary_tree_node<Item>*&root const
ltem& target);

* void bst_remove_max(binary_tree_node<Item>*&root, ltem&
removed);

Deadline: Monday, November 28, 2016



Presentation cop
For usedh Da

.:yMi Main .
n ' B iSsi orce
IC ti

o e =
™ )
Stu sa " . Dak C++ are welcome
t this . tno mains
in .

THE END




