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ry Search Trees

* One of the tree applications in
Chapter 10 is :
* In Chapter 10, binary search trees
are used to implement bags and
.y sets.

e This presentation illustrates how
another data type called a
is implemented with
binary search trees.




Binary Search Tree Definition

* In a binary search tree, the entries of the nodes can be compared
with a strict weak ordering. Two rules are followed for every node n:
* The entry in node nis NEVER less than an entry in its left subtree
* The entry in the node n is less than every entry in its right subtree.



The Dictionary Data Type

* A dictionary is a collection of
items, similar to a bag.

* But unlike a bag, each item
has a string attached to it,
called the item's key.




The Dictionary Data Type

* A dictionary is a collection of
items, similar to a bag.

* But unlike a bag, each item
has a string attached to it,
called the item's key.

Example:
The items | am
storing are records
containing data
about a state.




The Dictionary Data Type

* A dictionary is a collection of
items, similar to a bag.

* But unlike a bag, each item
has a string attached to it,
called the item's key.

Example:
The key for each
record is the name
of the state.




The Dictionary Data Type

A

void Dictionary::insert(1he key for the new item, The new item);

* The insertion procedure for a
dictionary has two
parameters.



The Dictionary Data Type

 When you want to retrieve an
item, you specify the

A

Item Dictionary::retrieve(

SV




The Dictionary Data Type

7 When you want to retrieve an
item, you specify the key...
... and the retrieval procedure
returns the item.




The Dictionary Data Type

* We'll look at how a binary
tree can be used as the
internal storage mechanism
for the dictionary.




A Binary Search Tree of States

The data in the
dictionary will | | —
be stored in a Colorado Oklahoma
binary tree, | | e
with each node v
. N | & P
containing an Y arizona. ass 4
and a . f L \Wgsh/jggtﬂ
—~ .
e ‘i}y «/2 a
Arkansas, 4
)JK

>



A Binary Search Tree of States
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A Binary Search Tree of States

Storage rules:

® Every key to the of |
a nodeiis Colorado
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the key of the node.
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A Binary Search Tree of States

Storage rules: =
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A Binary Search Tree of States

Storage rules: =
O Every key to the of | —
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Retrieving Data

Start at the root.

@ If the currentnode has |
the key, then stop and Colorado
retrieve the data. |

@ |If the currentnode's |
key iS tOO ’ move %Arizona
and repeat 1-3.

O If the currentnode's
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and repeat 1-3. 4
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Retrieve ' New Hampshire'

B
Start at the root. o
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Retrieve 'New Hampshire'

i’%‘ \
Start at the root. ®
@ If the currentnode has |
the key, then stop and  colorado Oklahoma
retrieve the data. N
® If the currentnode's . T\&
key is too , move |, Aizona " Washington
and repeat 1-3. P
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key is too , move Arkansas ‘B2
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Retrieve 'New Hampshire'
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Retrieve 'New Hampshire'
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Adding a New ltem with a
Given Key

® Pretend that you are
trying to find the key,
but stop when there s
no node to move to.
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Add | ng \ lowa
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Add | ng \ lowa
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Add | ng \ lowa
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Add | ng \ lowa
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Adding
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Adding
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Removing an ltem with a  Given Key

® Find the item.
® If necessary, swap the ——
item with one that is Colorado Oklahoma
easier to remove. N
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Removing "Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing 'Florida’
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Removing an ltem with a  Given Key

@ Find the item.

® If the item has a right child, rearrange the
tree:
* Find smallest item in the right subtree

e Copy that smallest item onto the one that you
want to remove

* Remove the extra copy of the smallest item
(making sure that you keep the tree connected)

else just remove the item.



ogmmary

* Binary search trees are a good implementation of
data types such as sets, bags, and dictionaries.

* Searching for an item is generally quick since you
move from the root to the item, without looking at
many other items.

* Adding and deleting items is also quick.

* But as you'll see later, it is possible for the quickness
to fail in some cases -- can you see why?



Assignment

e Read Section 10.5

* Assignment 6 — Bag class with a BST

* Memeber functions

* void insert(const ltem& entry);

* size_type count (const ltem& target);
* Non-member functions

* viod bst_remove_all(binary_tree_node<Item>*&root const
ltem& target);

* void bst_remove_max(binary_tree_node<Item>*&root, ltem&
removed);

Deadline: Monday, November 28, 2016
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