
CSC212
Data Structure

- Section FG

Lecture	16
Binary	Search	Trees

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

Binary	Search	Trees

•One	of	the	tree	applications	in	
Chapter	10	is	binary	search	trees.

• In	Chapter	10,	binary	search	trees	
are	used	to	implement	bags	and	
sets.

• This	presentation	illustrates	how	
another	data	type	called	a	
dictionary is	implemented	with	
binary	search	trees.

Binary	Search	Tree	Definition

• In	a	binary	search	tree,	the	entries	of	the	nodes	can	be	compared	
with	a	strict	weak	ordering.	Two	rules	are	followed	for	every	node	n:

• The	entry	in	node	n	is	NEVER	less	than	an	entry	in	its	left	subtree
• The	entry	in	the	node	n	is	less	than	every	entry	in	its	right	subtree.

The	Dictionary	Data	Type

•A	dictionary	is	a	collection	of	
items,	similar	to	a	bag.

•But	unlike	a	bag,	each	item	
has	a	string	attached	to	it,	
called	the	item's	key.

The	Dictionary	Data	Type

•A	dictionary	is	a	collection	of	
items,	similar	to	a	bag.

•But	unlike	a	bag,	each	item	
has	a	string	attached	to	it,	
called	the	item's	key.

Example:
The items I am
storing are records
containing data
about a state.

The	Dictionary	Data	Type

•A	dictionary	is	a	collection	of	
items,	similar	to	a	bag.

•But	unlike	a	bag,	each	item	
has	a	string	attached	to	it,	
called	the	item's	key.

Example:
The key for each
record is the name
of the state. Washington

The	Dictionary	Data	Type

• The	insertion	procedure	for	a	
dictionary	has	two	
parameters.

void Dictionary::insert(The key for the new item, The new item);

The	Dictionary	Data	Type

•When	you	want	to	retrieve	an	
item,	you	specify	the	key...	

Item Dictionary::retrieve("Washington");

Item Dictionary::retrieve("Washington");

The	Dictionary	Data	Type

❐ When you want to retrieve an
item, you specify the key...
... and the retrieval procedure
returns the item.

The	Dictionary	Data	Type

•We'll	look	at	how	a	binary	
tree	can	be	used	as	the	
internal	storage	mechanism	
for	the	dictionary.

Arizona

Arkansas

Colorado

A	Binary	Search	Tree	of	States

The	data	in	the	
dictionary	will	
be	stored	in	a	
binary	tree,	
with	each	node	
containing	an	
item and	a	key. Washington

Oklahoma

Mass.

N
ew

H
am

ps
hi

re

W
es

t
Vi

rg
in

ia

Colorado

Arizona

Arkansas

A	Binary	Search	Tree	of	States

Storage	rules:
❶ Every	key	to	the	left

of	a	node	is	
alphabetically	before	
the	key	of	the	node.

Washington

OklahomaColorado

Mass.

N
ew

H
am

ps
hi

re

W
es

t
Vi

rg
in

ia

Arizona

Colorado

Arkansas

A	Binary	Search	Tree	of	States

Storage	rules:
❶ Every	key	to	the	left of	

a	node	is	
alphabetically	before	
the	key	of	the	node.

Washington

Oklahoma

Mass.

N
ew

H
am

ps
hi

re

W
es

t
Vi

rg
in

ia

Example:
' Massachusetts' and
' New Hampshire'
are alphabetically
before 'Oklahoma'

Arizona

Arkansas

A	Binary	Search	Tree	of	States

Storage	rules:
❶ Every	key	to	the	left of	

a	node	is	
alphabetically	before	
the	key	of	the	node.

❷ Every	key	to	the				
right of	a	node	is	
alphabetically	after	
the	key	of	the	node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

A	Binary	Search	Tree	of	States

Storage	rules:
❶ Every	key	to	the	left of	

a	node	is	
alphabetically	before	
the	key	of	the	node.

❷ Every	key	to	the				
right of	a	node	is	
alphabetically	after
the	key	of	the	node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Retrieving	Data

Start	at	the	root.
❶ If	the	current	node	has	

the	key,	then	stop	and	
retrieve	the	data.

❷ If	the	current	node's	
key	is	too	large,	move	
left and	repeat	1-3.	

➌ If	the	current	node's	
key	is	too	small,	move	
right and	repeat	1-3.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Retrieve	'	New	Hampshire'

Start	at	the	root.
❶ If	the	current	node	has	

the	key,	then	stop	and	
retrieve	the	data.

❷ If	the	current	node's	
key	is	too	large,	move	
left and	repeat	1-3.	

➌ If	the	current	node's	
key	is	too	small,	move	
right and	repeat	1-3.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Retrieve	'New	Hampshire'

Start	at	the	root.
❶ If	the	current	node	has	

the	key,	then	stop	and	
retrieve	the	data.

❷ If	the	current	node's	
key	is	too	large,	move	
left and	repeat	1-3.	

➌ If	the	current	node's	
key	is	too	small,	move	
right and	repeat	1-3.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Retrieve	'New	Hampshire'

Start	at	the	root.
❶ If	the	current	node	has	

the	key,	then	stop	and	
retrieve	the	data.

❷ If	the	current	node's	
key	is	too	large,	move	
left and	repeat	1-3.	

➌ If	the	current	node's	
key	is	too	small,	move	
right and	repeat	1-3.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Retrieve	'New	Hampshire'

Start	at	the	root.
❶ If	the	current	node	has	

the	key,	then	stop	and	
retrieve	the	data.

❷ If	the	current	node's	
key	is	too	large,	move	
left and	repeat	1-3.	

➌ If	the	current	node's	
key	is	too	small,	move	
right and	repeat	1-3.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Adding	a	New	Item	with	a
Given	Key

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Arizona

Arkansas

Adding

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Arizona

Arkansas

Adding

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Arizona

Arkansas

Adding

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Arizona

Arkansas

Adding

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Arizona

Arkansas

Adding

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Arizona

Arkansas

Adding

❶ Pretend	that	you	are	
trying	to	find	the	key,	
but	stop	when	there	is	
no	node	to	move	to.

❷ Add	the	new	node	at	
the	spot	where	you	
would	have	moved	to	
if	there	had	been	a	
node.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Arizona

Arkansas

Adding	

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Where would you
add this state?

Arizona

Arkansas

Adding	

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Kazakhstan is the
new right child

of Iowa?

Arizona

Arkansas

Removing	an	Item	with	a				Given	Key

❶ Find	the	item.
❷ If	necessary,	swap	the	

item	with	one	that	is	
easier	to	remove.

❸ Remove	the	item.
Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Arizona

Arkansas

Removing	'Florida'

❶ Find the	item.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

Arizona

Arkansas

Removing	'Florida'

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa
Florida cannot be
removed at the

moment...

Arizona

Arkansas

Removing	'Florida'

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

... because removing
Florida would

break the tree into
two pieces.

Arizona

Arkansas

Removing	'Florida'

❷ If	necessary,	do	some	
rearranging.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa

The problem of
breaking the tree
happens because

Florida has 2 children.

Arizona

Arkansas

Removing	'Florida'

❷ If	necessary,	do	some	
rearranging.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

reIowa
For the rearranging,

take the smallest item
in the right subtree...

Work for
multi-set?

Arizona

Arkansas

Removing	'Florida'

❷ If	necessary,	do	some	
rearranging.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Iowa
...copy that smallest
item onto the item

that we're removing...

Arizona

Arkansas

Removing	'Florida'

❷ If	necessary,	do	some	
rearranging.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

... and then remove
the extra copy of the

item we copied...

Arizona

Arkansas

Removing	'Florida'

❷ If	necessary,	do	some	
rearranging.

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

... and reconnect
the tree

Arizona

Arkansas

Removing	'Florida'

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Why did I choose
the smallest item

in the right subtree?

Arizona

Arkansas

Removing	'Florida'

Washington

OklahomaColorado

W
es

t
Vi

rg
in

ia

Mass.

N
ew

H
am

ps
hi

re

Iowa

Because every key
must be smaller than

the keys in its
right subtree

Removing	an	Item	with	a				Given	Key

❶ Find	the	item.
❷ If	the	item	has	a	right	child,	rearrange	the	

tree:
• Find	smallest	item	in	the	right	subtree
• Copy	that	smallest	item	onto	the	one	that	you	
want	to	remove

• Remove	the	extra	copy	of	the	smallest	item	
(making	sure	that	you	keep	the	tree	connected)

else	just	remove	the	item.

Summary

•Binary	search	trees	are	a	good	implementation	of	
data	types	such	as	sets,	bags,	and	dictionaries.

• Searching	for	an	item	is	generally	quick	since	you	
move	from	the	root	to	the	item,	without	looking	at	
many	other	items.

•Adding	and	deleting	items	is	also	quick.
•But	as	you'll	see	later,	it	is	possible	for	the	quickness	
to	fail	in	some	cases	-- can	you	see	why?

Assignment

•Read	Section	10.5
•Assignment	6	– Bag	class	with	a	BST

• Memeber functions	
• void	insert(const Item& entry);
• size_type count	(const Item& target);

• Non-member	functions
• viod bst_remove_all(binary_tree_node<Item>*& root	const

Item& target);
• void	bst_remove_max(binary_tree_node<Item>*& root,	Item&
removed);

Deadline:	Monday,	November	28,	2016

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

