CSC212 F X ((;Ol\/&PUTER Sl\(IZIE$CE
S5 ITY COLLEGE OF NEW YORK

Data Structure

- Section FG

Lecture 15
Trees and Tree Traversals

Instructor: Feng HU
Department of Computer Science
City College of New York

Motivation

* Linear structures
* arrays
e dynamicarrays
* linked lists
* Nonlinear Structures
* trees - Hierarchical Structures
* Graphs

« Why???

Application: Mailing Addresses

Feng HU, CS Dept, CCNY, New York, NY 10031, USA

6 billion = 6,000,000,000 people in the world

What kind of structure 1s the best for a postman to locate me?
Array ?
Linked list ?

Tree ?

A Tree for all the mailing addresses

s and Binary Trees

lal]

Data Structures

and Other Objects
Using C++

* Chapter 10 introduces

* This presentation illustrates basic
terminology for binary trees

. and focuses on

the simplest
k|nd of trees

any kind of
binary trees

Binary Trees

* A binary tree has , similar to nodes in a linked
list structure.

of one sort or another may be stored at each
node.

*But it is the between the nodes which
characterize a binary tree.

Binary Trees

* A binary tree has nodes, similar to nodes in a linked
list structure.

* Data of one sort or another may be stored at each
node.

e But it is the connections between the nodes which
characterize a binary ge.

A Binary Tree of States

‘ iL\
. <

L/\ Washington

In this example,

the data e
. rkansas

contained at f

each node is

one of the 50 T ﬂ

states. J;,%%j H Oklahoma jArizona
\\’j?\ \ \/ - ‘ |

K8 A AN M
A

A

Colorado
) | |

.)

e 2
Mass: . Y

A /,/,',7 033 g/
zTv Nebraska

A Binary Tree of States

Each tree has a
special node
called its root,

e |
usually drawn ﬁ / \
at the top. i

2 ﬂ)

W (!
\) |
o J—/ N
P Y
. H . N
Washington Arkansas Colorado Florida Oklahoma Arizona Mass. Hampstire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Each tree has a
special node
called its root,

usually drawn /
at the top. e
y

EP\\L'T, -

V)

‘«;\/[}

A\

P
(2
(e

New

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. Hampshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Each node s
permitted to
have two links

to other nodes, | / \
called the left T
ICit A \

child and the Lt L
[] [] \/74 \ <
right child. 8 b
\) |
VL J—/
Washington Arkansas Colorado Florida oklghoma Arizona Mass. Hampshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Each nodeis
permitted to
have|two links
to other nodes,

called the left
child and the
right child. \ Basally
— {
S W; p Y
v J—/
Washington Arkansas Colorado Florida oklghoma Arizona Mass. Hampshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Children are
usually drawn
below a node.

. {
W L
P Y

. H . N
Washington Arkansas Colorado Florida Oklahoma Arizona Mass. Hempshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Some nodes

have only one
child.

o
»i
e
g
\ .

§ j
[S W b P \\\
\/,)“”V/vl 3
. . N
Washington Arkansas Oklahoma Arizona Mass. Hampshre Nebraska

FT1T1 % ¥ O

A Quiz

Some nodes

have only one
child.

o
»i
"
\ .

> J
{ S p
o Y
. . New
Washington Ar olorado ahoma Arizona Mass. Hampshire Nebraska

S 1 1 e ¥ B

A Quiz

Some nodes

have only one
child.

New
Mass. Hampshire Nebraska

Washington A

ma Arizona

A Binary Tree of States

A node with no
children is
called a leaf.

4
>
K4 Tl /
\) ;

P
o J—/ N
P Y
. H . N
Washington Arkansas Colorado Florida Oklahoma Arizona Mass. Hompshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Each nodeis
called the
parent of its
children.

o
»i
e
g
\ .

. J
[S W b P \\\
v S
. . New
Washington Ar olorado ahoma Arizona Mass. Hampshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Two rules about parents:

® The root has no
parent. o —

Y

® Every other node

has exactly one .
parent. \
4 J

P
[X b J—/ Y
\/,‘/v/ijr/v‘ //
. H . N
Washington Arkansas Colorado Florida Oklahoma Arizona Mass. Hempshire Nebraska

S 1 1 e ¥ B

A Binary Tree of States

Two nodes with
the same
parent are
called siblings.

o
»i
e
g
\ .

. J
{ S p
v S
. . New
Washington Ar olorado ahoma Arizona Mass. Hampshire Nebraska

S 1 1 e ¥ B

Complete Binary Trees

A binary
tree is a special kind of
binary tree which will
be useful to us.

Complete Binary Trees

A complete binary
tree is a special kind of
binary tree which will
be useful to us.

Complete Binary Trees

The second node of a complete
binary tree is always the left
child of the root...

Complete Binary Trees

The second node of a complete
binary tree is always the left
child of the root...

... and the third node is always
the right child of the root.

Complete Binary Trees

The next nodes must
always fill the next
level from

Complete Binary Trees

The next nodes must
always fill the next
level from

Complete Binary Trees

The next nodes must
always fill the next
level from

Complete Binary Trees

The next nodes must

always fill the next
level from

Complete Binary Trees

The next nodes must

always fill the next
level from

Complete Binary Trees

The next nodes must

always fill the next
level from

. \7
B i —
A
N
£ >

Is This Complete?

Is This Complete?

Is This Complete?

[

Is This Complete?

[

Is This Complete?

Yes!

v ltis called the empty tree, and it
has no nodes, not even a root.

Full Binary Trees

A full binary tree is a N4/
special kind of
complete binary tree

FULL

Full Binary Trees

The second node of a full binary

tree is always the left child of
the root...

Full Binary Trees

The second node of a full binary

tree is alwaysthe left child of the
root...

... and you MUST have the third

node which always the right child
of the root.

Full Binary Trees

The next nodes must

always fill the next
level from

Full Binary Trees

The next nodes must

always fill the next
level from

Full Binary Trees

The next nodes must

always fill the next
level from

Full Binary Trees

The next nodes must
always fill the next
level from

...until every leaf
has the same depth

(2)

Full Binary Trees

The next nodes must

always fill the next
level from

Full Binary Trees

The next nodes must

always fill the next
level from

[>
L : (s
) A A N { ?\
\‘ .
W
Y H 4 Qg
<
AR
3
T
-~
-

Is This Full?

Is This Full?

Is This Full?

Is This Full?

Is This Full?

Yes!

v ltis called the empty tree, and it
has no nodes, not even a root.

Implementing a Complete Binary Tree

 We will store the date from the nodes
in a partially-filled array.

An integer to keep
track of how many nodes are in the tree

An array of data ¥_V_

We don't care what's in
this part of the array.

Implementing a Complete Binary Tree Using
an Array

 We will store the date from the nodes
in a partially-filled array.

An integer to keep
track of how many nodes are in the tree

An array of

this part of the array.

Implementing a Complete Binary Tree Using
an Array

* Root is at component [0O]
* Parent of node in [i] is at [(i-1)/2)
 Children (if exist) of node [i] is at [2i+1] and [2i+2]

e Total node number
o 204214224 429414r r<=2d disthe depth

nary Tree Summary

* Binary trees contain nodes.
* Each node may have a left child and a right child.

* If you start from any node and move upward, you
will eventually reach the root.

* Every node except the root has one parent. The
root has no parent.

* Complete binary trees require the nodes to fill in
each level from left-to-right before starting the next
level.

Binary Tree Basics

A binary tree is a structure in which:

Each node can have at most two children, and in
which a unique path exists from the root to every
other node.

The two children of a node are called the
and the if they exist.

A Binary Tree Exercise

How many leaf nodes?

’

How many descendants of Q?

’

How many ancestors of K?

Question: How to implement a general binary tree ?

Implementing a Binary Tree with a Class for
Nodes

Binary Tree Nodes

* Each node of a binary tree is stored in an object of a new
binary_tree _node class that we are going to define

* Each node contains data as well as pointers to its children (nodes)

* An entire tree is represented as a pointer to the root node

binary tree node Class .
— — bintree

* variables

* functions

template <class ltem>
class binary_tree node

private:
ltem data_field;
binary tree node *left_field;
binary_tree_node *right _field;

Creating and Manipulating Trees

e Consider only two functions

* Clearing a tree
* Return nodes of a tree to the heap

* Copying a tree

* The Implementation is easier than it seems
* if we use recursive thinking

Clearing a Tree

Root

Clear LEFT SUBTREE

Clearing a Tree

Root

Clear RIGHT SUBTREE

Clearing a Tree
oo (i

Return root node to the heap

Clearing a Tree

Set the root pointer to NULL

Clear a Tree |
bintree

* key: recursive thinking

template <class ltem>
void tree_clear(binary_tree node<Iltem>*& root_ptr)
// Library facilities used: cstdlib
{
if (root_ptr = NULL)
{
tree_clear(root_ptr->left()); // clear left sub_tree

tree clear(root_ptr->right()); // clear right sub_tree
delete root_ptr; // return root node to the heap

root_ptr = NULL; // set root pointer to the null

Copy a Tree

bintree

* Can you implement the copy? (p 467)

template <class ltem>
binary_tree node<ltem>* tree_copy(const binary_tree node<ltem>* root_ptr)
/I Library facilities used: cstdlib

{

binary_tree _node<Iltem> *|_ptr;
binary_tree_node<Iltem> *r_ptr;

if (root_ptr == NULL)
return NULL;
else
{
| _ptr = tree_copy(root_ptr->left()); // copy the left sub_tree
r_ptr =tree_copy(root_ptr->right()); // copy the right sub_tree
return
new binary tree node<ltem>(root ptr->data(), |_ptr, r_ptr);
} Il copy the root node and set the the root pointer

Binary Tree Traversals

* pre-order traversal
* root (left sub_tree) (right sub_tree)

* in-order traversal
* (left sub_tree) root (right sub_tree)

e post-order traversal
* (left sub_tree) (right sub_tree) root

* backward in-order traversal
* (right sub_tree) root (left sub_tree)

bintree

Preorder Traversal: JEAHTMY

nt first

Print left subtree second

Preorder Traversal

* Example: print the contents of each node

template <class ltem>
void preorder_print(const binary_tree_node<Iltem>* node_ptr)
// Library facilities used: cstdlib, iostream

{
if (node_ptr = NULL)

{
std::cout << node_ptr->data() << std::endl;
preorder_print(node_ptr->left());
preorder_print(node_ptr->right());

}
}

Inorder Traversal: AEHIMTY

Print second

- =

Print left subtree first

Inorder Traversal

* Example: print the contents of each node

template <class ltem>
void inorder_print(const binary tree node<ltem>* node ptr)
// Library facilities used: cstdlib, iostream

{
if (node_ptr = NULL)

{
inorder_print(node_ptr->left());
std::cout << node_ptr->data() << std::endl;
inorder_print(node_ptr->right());
}
}

Postorder Traversal: AHEMYTJ

Print left subtree first Print right subtree second

Postorder Traversal

* Example: print the contents of each node

template <class ltem>
void postorder_print(const binary tree _node<Item>* node_ptr)
// Library facilities used: cstdlib, iostream

{
if (node_ptr = NULL)

{
postorder_print(node_ptr->left());
postorder_print(node_ptr->right());
std::cout << node_ ptr->data() << std::endl;

}
}

Backward Inorder Traversal:
YTMJHEA

Print second

Print right subtree first

Backward Inorder Traversal:
YTMJHEA

Print right subtree first

Print second

A Useful Backward
Inorder Traversal bintree

* Intent each number according its depth

template <class ltem, class SizeType>
void print(binary tree _node<ltem>* node_ ptr, SizeType depth)

// Library facilities used: iomanip, iostream, stdlib

{
if (node_ptr = NULL)

{
print(node_ptr->right(), depth+1);
std::cout << std::setw(4*depth) <<™; // Indent 4*depth spaces.
std::cout << node_ ptr->data() << std::endl;

print(node_ptr->left(), depth+1);

A Challenging Question:

* For the traversals we have seen, the “processing”
was simply printing the values of the node

* But we’d like to do any kind of processing

* We can replace “cout” with some other form of
“processing”

* But how about 1000 kinds?
e Can template be helpful?

 Solution::::::::> (pages 501 — 507)

A parameter can be a function

e write one function capable of doing anything

* A parameter to a function may be a function. Such a
parameter is declared by
* the name of the function’s return type (or void),
* then the name of the parameter (i.e. the function),
 and finally a pair of parentheses ().
* Inside () is a list of parameter types of that parameter
function
* Example

*intsum (voidf (int&, double),inti,...);

Preorder Traversal — print only

* Example: print the contents of each node

template <class ltem>
void preorder_print(const binary_tree_node<Iltem>* node_ptr)
// Library facilities used: cstdlib, iostream

{
if (node_ptr = NULL)

{
std::cout << node_ptr->data() << std::endl;
preorder_print(node_ptr->left());
preorder_print(node_ptr->right());

}
}

Preorder Traversal — general form

* A template function for tree traversals

template <class ltem>

void preorder , binary_tree node<Iltem>* node_ptr)
// Library facilities used: cstdlib
{

if (node_ptr = NULL)
{
; /[l node_ptr->data() return reference !
preorder(f, node_ptr->left());
preorder(f, node_ptr->right());
}
}

Preorder Traversal — how to use

* Define a real function before calling

void printout(int & it)
// Library facilities used: iostream

{
}

std::cout << it << std::endl;

Can you print out all the node of a tree pointed by root ?
binary tree node<int> *root;

preorder(printout, root);

Preorder Traversal — another functions

e Can define other functions...

void assign_default(int& it)
// Library facilities used: iostream

{

it =0;
} // unfortunately template does not work here for function parameters
You can assign a default value to all the node of a tree pointed by root:

binary_tree node<int> *root;

preorder(assign_default, root);

Preorder Traversal — how to use

e Can the function-arguments be template?

template <class ltem>
void printout(ltem& it)
// Library facilities used: iostream

{
}

std::cout << it << std::endl;

Can you print out all the node of a tree pointed by root ?
binary tree node<string> *root;

preorder(print_out, root);

Preorder Traversal — how to use

* The function-arguments may be template if...

template <class ltem>
void printout(ltem& it)
// Library facilities used: iostream

{
}

std::cout << it << std::endl;

Can you print out all the node of a tree pointed by root ?
binary tree node<string> *root;

preorder(print_out , root);

Preorder Traversal
—a more general form bintree

* An extremely general implementation (p 505)

template < , class BTNode>

void preorder(, BTNode* node_ptr)
// Note: BTNode may be a binary_tree node or a const binary tree node.
/[Process is the type of a function f that may be called with a single
/[ltem argument (using the ltem type from the node),

I/
// Library facilities used: cstdlib
{
if (node_ptr != NULL)
{

f(node_ptr->data());
preorder(f, node_ptr->left());
preorder(f, node_ptr->right());

Functions as Parameters

* We can define a template function X with functions as
parameters — which are called function parameters

* A function parameter can be simply written as Process f
(where Process is a template), and the forms and number of
parameters for f are determined by the actual call of f inside

the template function X

* The real function argument for f when calling the the
template function X cannot be a template function, it must
be instantiated in advance or rightin the function call

Summary

* Tree, Binary Tree, Complete Binary Tree
* child, parent, sibling, root, leaf, ancestor,...

* Array Representation for Complete Binary Tree
* Difficultif not complete binary tree

* A Class of binary_tree_node
e each node with two link fields

* Tree Traversals
* recursive thinking makes things much easier

* A general Tree Traversal
* A Function as a parameter of another function

Presentation cop
For usedh Da

.:yMi Main .
n ' B iSsi orce
IC ti

o e =
™)
Stu sa " . Dak C++ are welcome
t this . tno mains
in .

THE END

