
CSC212
Data Structure
- Section FG

Lecture	15
Trees	and	Tree	Traversals

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

Motivation

• Linear	structures
• arrays
• dynamic	arrays
• linked	lists

• Nonlinear	Structures
• trees	- Hierarchical	Structures
• Graphs	

• Why???

Application:	Mailing	Addresses

Feng HU, CS Dept, CCNY, New York, NY 10031, USA

6 billion = 6,000,000,000 people in the world

What kind of structure is the best for a postman to locate me?

Array ?

Linked list ?

Tree ?

A	Tree	for	all	the	mailing	addresses

China

Earth

USA... ...Korea

NY
... ...

... ...

NYC

MA

CCNY

F. HU

Albany

...

... ...

... ...

CS

Trees	and	Binary	Trees

•Chapter	10	introduces	trees.
• This	presentation	illustrates	basic	
terminology	for	binary	trees

• and	focuses	on	
• Complete	Binary	Trees:	the	simplest	
kind	of	trees

• Binary	Tree	Traversals:	any	kind	of	
binary	trees

Data Structures
and Other Objects
Using C++

Binary	Trees

•A	binary	tree	has	nodes,	similar	to	nodes	in	a	linked	
list	structure.

•Data of	one	sort	or	another	may	be	stored	at	each	
node.

•But	it	is	the	connections between	the	nodes	which	
characterize	a	binary	tree.

Binary	Trees

•A	binary	tree	has	nodes,	similar	to	nodes	in	a	linked	
list	structure.

•Data of	one	sort	or	another	may	be	stored	at	each	
node.

•But	it	is	the connections between	the	nodes	which	
characterize	a	binary	tree.

An example can
illustrate how the
connections work

A	Binary	Tree	of	States

In	this	example,	
the	data	
contained	at	
each	node	is	
one	of	the	50	
states.

Washington

Colorado

Oklahoma

Arkansas

Mass.

N
ew

H
am

ps
hi

re

Arizona

Nebraska

A	Binary	Tree	of	States

Each	tree	has	a	
special	node	
called	its	root,	
usually	drawn	
at	the	top.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Each	tree	has	a	
special	node	
called	its	root,	
usually	drawn	
at	the	top. The example tree

has Washington
as its root.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Each	node	is	
permitted	to	
have	two	links	
to	other	nodes,	
called	the	left	
child and	the	
right	child.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Each	node	is	
permitted	to	
have	two	links	
to	other	nodes,	
called	the	left	
child and	the	
right	child.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Children	are	
usually	drawn	
below	a	node.

The right child of
Washington is

Colorado.

The left child of
Washington is

Arkansas.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Some	nodes	
have	only	one	
child.

Arkansas has a
left child, but no

right child.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Quiz

Some	nodes	
have	only	one	
child.

Which node has
only a right child?

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Quiz

Some	nodes	
have	only	one	
child.

Florida has
only a right child.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

A	node	with	no	
children	is	
called	a	leaf.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Each	node	is	
called	the	
parent of	its	
children.

Washington is the
parent of Arkansas

and Colorado.
Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New

Hampshire Nebraska

A	Binary	Tree	of	States

Two	rules	about	parents:

❶ The root has no
parent.

❷ Every other node
has exactly one
parent.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

A	Binary	Tree	of	States

Two	nodes	with	
the	same	
parent	are	
called	siblings.

Arkansas
and Colorado
are siblings.

Washington Arkansas Colorado Florida Oklahoma Arizona Mass. New
Hampshire Nebraska

Complete	Binary	Trees

A	complete	binary	
tree	is	a	special	kind	of	
binary	tree	which	will	
be	useful	to	us.

Complete	Binary	Trees

A	complete	binary	
tree	is	a	special	kind	of	
binary	tree	which	will	
be	useful	to	us.

When a complete
binary tree is built,

its first node must be
the root.

Complete	Binary	Trees

The	second	node	of	a	complete	
binary	tree	is	always	the	left	
child	of	the	root...

Complete	Binary	Trees

The	second	node	of	a	complete	
binary	tree	is	always	the	left	
child	of	the	root...
...	and	the	third	node	is	always	
the	right	child	of	the	root.

Complete	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Complete	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Complete	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Complete	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Complete	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Complete	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Is	This	Complete?

Is	This	Complete?

Is	This	Complete?

Is	This	Complete?

Is	This	Complete?

Yes!
✔ It	is	called	the	empty	tree,	and	it	

has	no	nodes,	not	even	a	root.

Full	Binary	Trees

A	full	binary	tree	is	a	
special	kind	of	
complete	binary	tree

When a full
binary tree is built,

its first node must be
the root.

FULL

Full	Binary	Trees

The	second	node	of	a	full	binary	
tree	is	always	the	left	child	of	
the	root...

not FULL yet

Full	Binary	Trees

The	second	node	of	a	full	binary	
tree	is	always	the	left	child	of	the	
root...
...	and	you	MUST	have	the	third	
node	which	always	the	right	child	
of	the	root. FULL

Full	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

not FULL yet

Full	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

not FULL yet

Full	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

not FULL yet

Full	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right...until	every	leaf	
has	the	same	depth	
(2)

FULL!

Full	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Full	Binary	Trees

The	next	nodes	must	
always	fill	the	next	
level	from	left	to	
right.

Is	This	Full?

Is	This	Full?

Is	This	Full?

Is	This	Full?

Is	This	Full?

Yes!
✔ It	is	called	the	empty	tree,	and	it	

has	no	nodes,	not	even	a	root.

Implementing	a	Complete	Binary	Tree

•We	will	store	the	date	from	the	nodes	
in	a	partially-filled	array.

An array of data
We don't care what's in

this part of the array.

An integer to keep
track of how many nodes are in the tree

3

Implementing	a	Complete	Binary	Tree	Using	
an	Array

•We	will	store	the	date	from	the	nodes	
in	a	partially-filled	array.

An array of data
We don't care what's in

this part of the array.

An integer to keep
track of how many nodes are in the tree

3

Read Section 10.2 to
see details of how

the entries are stored.

Implementing	a	Complete	Binary	Tree	Using	
an	Array

• Root	is	at	component	[0]
• Parent	of	node	in	[i]	is	at	[(i-1)/2)	
• Children	(if	exist)	of	node	[i]	is	at	[2i+1]	and	[2i+2]

• Total	node	number	
• 20+21+22+…+2d-1+r,	 	r	<=	2d,		d	is	the	depth

Binary	Tree	Summary

•Binary	trees	contain	nodes.
• Each	node	may	have	a	left	child	and	a	right	child.
• If	you	start	from	any	node	and	move	upward,	you	
will	eventually	reach	the	root.

• Every	node	except	the	root	has	one	parent.	The	
root	has	no	parent.

•Complete	binary	trees	require	the	nodes	to	fill	in	
each	level	from	left-to-right	before	starting	the	next	
level.

Binary	Tree		Basics

A	binary	tree	is	a	structure	in	which:

Each	node	can	have	at	most	two	children,	and	in	
which	a	unique	path	exists	from	the	root	to	every	
other	node.

The	two	children	of	a	node	are	called	the				left	
child and	the	right	child, if	they	exist.

A	Binary	Tree	Exercise

Q

V

T

K S

AE

L

How	many	leaf	nodes?

Q

V

T

K S

AE

L

How	many	descendants	of	Q?

Q

V

T

K S

AE

L

How	many	ancestors	of	K?

Q

V

T

K S

AE

L

Question: How to implement a general binary tree ?

Implementing	a	Binary	Tree	with	a	Class	for	
Nodes

Q

V

T

K S

AE

L

Root

Binary	Tree	Nodes

• Each	node	of	a	binary	tree	is	stored	in	an	object	of	a	new	
binary_tree_node	class	that	we	are	going	to	define

• Each	node	contains	data	as	well	as	pointers	to	its	children	(nodes)
• An	entire	tree	is	represented	as	a	pointer	to	the	root	node

binary_tree_node	Class

• variables
• functions

template <class Item>
class binary_tree_node
{
public:

......
private:

Item data_field;
binary_tree_node *left_field;
binary_tree_node *right_field;

};

bintree

//retrievals
data
left
right
//set
set_data
set_left
set_right
//boolean
is_leaf

Creating	and	Manipulating	Trees

• Consider	only	two	functions
• Clearing	a	tree

• Return	nodes	of	a	tree	 to	the	heap
• Copying	a	tree

• The	Implementation	is	easier	than	it	seems	
• if	we	use	recursive	thinking

Clearing	a	Tree

Q

V

T

K S

AE

L

Root

Clear LEFT SUBTREE

Clearing	a	Tree

V

S

A

L

Root

Clear RIGHT SUBTREE

Clearing	a	Tree

VRoot

Return root node to the heap

Clearing	a	Tree

NULL Root

Set the root pointer to NULL

Clear	a	Tree

• key:	recursive	thinking

template <class Item>
void tree_clear(binary_tree_node<Item>*& root_ptr)
// Library facilities used: cstdlib
{

if (root_ptr != NULL)
{

tree_clear(root_ptr->left()); // clear left sub_tree
tree_clear(root_ptr->right()); // clear right sub_tree
delete root_ptr; // return root node to the heap
root_ptr = NULL; // set root pointer to the null

}
}

bintree

Copy	a	Tree

• Can	you	implement	the	copy?		(p	467)

template <class Item>
binary_tree_node<Item>* tree_copy(const binary_tree_node<Item>* root_ptr)
// Library facilities used: cstdlib
{

binary_tree_node<Item> *l_ptr;
binary_tree_node<Item> *r_ptr;

if (root_ptr == NULL)
return NULL;

else
{

l_ptr = tree_copy(root_ptr->left()); // copy the left sub_tree
r_ptr = tree_copy(root_ptr->right()); // copy the right sub_tree
return

new binary_tree_node<Item>(root_ptr->data(), l_ptr, r_ptr);
} // copy the root node and set the the root pointer

}

bintree

Binary	Tree	Traversals

• pre-order	 traversal
• root	(left	sub_tree)	 (right	 sub_tree)

• in-order	traversal
• (left	sub_tree)	 root	(right	 sub_tree)

• post-order	 traversal
• (left	sub_tree)	 (right	 sub_tree)	root

• backward	in-order	traversal
• (right	 sub_tree)	root	 (left	sub_tree)

bintree

Preorder	Traversal:			J	E	A	H	T	M	Y

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print left subtree second Print right subtree last

Print first

Preorder	Traversal

• Example:	print	the	contents	of	each	node

template <class Item>
void preorder_print(const binary_tree_node<Item>* node_ptr)
// Library facilities used: cstdlib, iostream
{

if (node_ptr != NULL)
{

std::cout << node_ptr->data() << std::endl;
preorder_print(node_ptr->left());
preorder_print(node_ptr->right());

}
}

Inorder	Traversal:		A	E	H	J	M	T	Y

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print left subtree first Print right subtree last

Print second

Inorder	Traversal

• Example:	print	the	contents	of	each	node

template <class Item>
void inorder_print(const binary_tree_node<Item>* node_ptr)
// Library facilities used: cstdlib, iostream
{

if (node_ptr != NULL)
{

inorder_print(node_ptr->left());
std::cout << node_ptr->data() << std::endl;
inorder_print(node_ptr->right());

}
}

Postorder Traversal: A H E M Y T J

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print left subtree first Print right subtree second

Print last

Postorder	Traversal

• Example:	print	the	contents	of	each	node

template <class Item>
void postorder_print(const binary_tree_node<Item>* node_ptr)
// Library facilities used: cstdlib, iostream
{

if (node_ptr != NULL)
{

postorder_print(node_ptr->left());
postorder_print(node_ptr->right());
std::cout << node_ptr->data() << std::endl;

}
}

Backward	Inorder	Traversal:
Y	T	M	J	H	E	A

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Print right subtree firstPrint left subtree last

Print second

Backward	Inorder	Traversal:
Y	T	M	J	H	E	A

Print right subtree first

Print left subtree last

Print second

A	Useful	Backward
Inorder	Traversal

• Intent	each	number	according	its	depth

template <class Item, class SizeType>
void print(binary_tree_node<Item>* node_ptr, SizeType depth)
// Library facilities used: iomanip, iostream, stdlib
{

if (node_ptr != NULL)
{

print(node_ptr->right(), depth+1);
std::cout << std::setw(4*depth) << ""; // Indent 4*depth spaces.
std::cout << node_ptr->data() << std::endl;
print(node_ptr->left(), depth+1);

}
}

bintree

A	Challenging	Question:

• For	the	traversals	we	have	seen,	the	“processing”	
was	simply	printing	the	values	of	the	node

•But	we’d	like	to	do	any	kind	of	processing
• We	can	replace	“cout”	with	some	other	form	of	
“processing”	

•But	how	about	1000	kinds?
• Can	template	be	helpful?

• Solution::::::::>	 (pages	501	– 507)

A	parameter	can	be	a	function

•write	one	function	capable	of	doing	anything
•A	parameter	to	a	function	may	be	a	function.	Such	a	
parameter	is	declared	by	
• the	name	of	the	function’s	return	type	(or	void),	
• then	the	name	of	the	parameter	(i.e.	the	function),	
• and	finally	a	pair	of	parentheses	().	
• Inside	()	is	a	list	of	parameter	types	of	that	parameter	
function

• Example
• int	sum	(void	f	(int&,	double),	int	i,...);

Preorder	Traversal	– print	only

• Example:	print	the	contents	of	each	node

template <class Item>
void preorder_print(const binary_tree_node<Item>* node_ptr)
// Library facilities used: cstdlib, iostream
{

if (node_ptr != NULL)
{

std::cout << node_ptr->data() << std::endl;
preorder_print(node_ptr->left());
preorder_print(node_ptr->right());

}
}

Preorder	Traversal	– general	form

• A	template	function	for	tree	traversals

template <class Item>
void preorder(void f(Item&), binary_tree_node<Item>* node_ptr)
// Library facilities used: cstdlib
{

if (node_ptr != NULL)
{

f(node_ptr->data()); // node_ptr->data() return reference !
preorder(f, node_ptr->left());
preorder(f, node_ptr->right());

}
}

Preorder	Traversal	– how	to	use

• Define	a	real	function	before	calling

void printout(int & it)
// Library facilities used: iostream

{
std::cout << it << std::endl;

}

Can you print out all the node of a tree pointed by root ?

binary_tree_node<int> *root;
....
preorder(printout, root); Yes!!!

Preorder	Traversal	– another	functions

• Can	define	other	functions...

void assign_default(int& it)
// Library facilities used: iostream

{
it = 0;

} // unfortunately template does not work here for function parameters

You can assign a default value to all the node of a tree pointed by root:

binary_tree_node<int> *root;
....
preorder(assign_default, root);

Preorder	Traversal	– how	to	use

• Can	the	function-arguments	be	template?

template <class Item>
void printout(Item& it)
// Library facilities used: iostream

{
std::cout << it << std::endl;

}

Can you print out all the node of a tree pointed by root ?

binary_tree_node<string> *root;
....
preorder(print_out, root); X ! print_out should have real types

Preorder	Traversal	– how	to	use

• The	function-arguments	may	be	template	if...

template <class Item>
void printout(Item& it)
// Library facilities used: iostream

{
std::cout << it << std::endl;

}

Can you print out all the node of a tree pointed by root ?

binary_tree_node<string> *root;
....
preorder(print_out<string>, root);

But you may do the
instantiation like this

Preorder	Traversal	
– a	more	general	form

• An	extremely	general	implementation	(p	505)

template <class Process, class BTNode>
void preorder(Process f, BTNode* node_ptr)

// Note: BTNode may be a binary_tree_node or a const binary tree node.
// Process is the type of a function f that may be called with a single
// Item argument (using the Item type from the node),
// as determined by the actual f in the following.
// Library facilities used: cstdlib

{
if (node_ptr != NULL)
{

f(node_ptr->data());
preorder(f, node_ptr->left());
preorder(f, node_ptr->right());

}
}

bintree

Functions	as	Parameters

• We	can	define	a	template	function	X with	functions	as	
parameters	– which	are	called	function	parameters

• A	function	parameter	can	be	simply	written	as	Process	f
(where	Process	is	a	template),	and	the	forms	and	number	of	
parameters	for	f are	determined	by	the	actual	call	of	f	inside	
the	template	function	X	

• The	real	function	argument	for	fwhen	calling	the	the	
template	function	X cannot	be	a	template	function,	it	must	
be	instantiated	in	advance	or	right	in	the	function	call

Summary

• Tree,	Binary	Tree,	Complete	Binary	Tree
• child,	parent,	sibling,	root,	leaf,	ancestor,...

•Array	Representation	for	Complete	Binary	Tree
• Difficult	if	not	complete	binary	tree

•A	Class	of	binary_tree_node
• each	node	with	two	link	fields	

• Tree	Traversals	
• recursive	thinking	makes	things	much	easier

•A	general	Tree	Traversal	
• A	Function	as	a	parameter	of	another	function

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

Copyright from slide 2 – slide 49:

