
CSC212 
Data Structure 

- Section FG

Lecture	14
Reasoning	about	Recursion

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York



Outline	of	This	Lecture

•Recursive	Thinking:	General	Form
• recursive	calls	and	stopping	cases

• Infinite	Recursion	
• runs	forever	

•One	Level	Recursion	
• guarantees	to	have	no	infinite	recursion

•How	to	Ensure	No	Infinite	Recursion
• if	a	function	has	multi	level	recursion

• Inductive	Reasoning	about	Correctness
• using	mathematical	induction	principle



Recursive	Thinking:	General	Form

•Recursive	Calls	
• Suppose	a	problem	has	one	or	more	cases	in	which	some	
of	the	subtasks	are	simpler	versions	of	the	original	
problem.	These	subtasks	can	be	solved	by	recursive	calls

• Stopping	Cases	/Base	Cases
• A	function	that	makes	recursive	calls	must	have	one	or	
more	cases	in	which	the	entire	computation	is	fulfilled	
without	recursion.	These	cases	are	called	stopping	cases	
or	base	cases



Infinite	Recursion	

• In	all	our	examples,	the	series	of	recursive	calls	eventually	reached	a	
stopping	case,	i.e.	a	call	that	did	not	involve	further	recursion	

• If	every	recursive	call	produce	another	recursive	call,	then	the	
recursion	is	an	infinite	recursion that	will,	in	theory,	run	forever.

• Can	you	write	one?	



Example:	power	(x,n)	=	xn

• Rules:
• power(3.0,2)	=	3.02 =	9.0
• power(4.0,	3)	=	4.03 =	64.0
• power(x,	0)	=	x0	=	1		if	x	!=	0
• x-n =	1/	xn			where	x<>0,		n	>	0	

• power(3.0,	-2)	=	3.0-2 =	1/3.02=	1/9
• 0n	

• =	0	if	n	>	0
• invalid	if	n<=0		(and	x	==	0)	



ipower(x,	n):	Infinite	Recursion

double ipower(double x, int n)
// Library facilities used: cassert

{
if (x == 0) 

assert(n > 0); //precondition

if (n >= 0)
{

return ipower(x,n); // postcondition 1
}
else
{

return 1/ipower(x, -n); // postcondition 2
}

}

Computes powers of the form xn



ipower(x,	n):	Infinite	Recursion

double ipower(double x, int n)
// Library facilities used: cassert

{
if (x == 0) 

assert(n > 0); //precondition

if (n >= 0)
{

return ipower(x,n); // need to be developed into a stopping case
}
else
{

return 1/ipower(x, -n); // recursive call
}

}

Computes powers of the form xn

double product =1;
for (int i = 1; i<=n; ++i) 

product *= x;
return product;



power(x,	n):	One	Level	Recursion

double power(double x, int n)
// Library facilities used: cassert

{
double product; // The product of x with itself n times
int count;
if (x == 0) assert(n > 0);
if (n >= 0)  // stopping case
{

product = 1;
for (count = 1; count <= n; count++)

product = product * x;
return product;

}
else // recursive call

return 1/power(x, -n);
}

Computes powers of the form xn



One	Level	Recursion

• First	general	technique	for	reasoning	about	recursion:
• Suppose	 that	every	case	is	either	a	stopping	 case	or	it	makes	a	recursive	call	
that	is	a	stopping	case.	Then	the	deepest	recursive	call	is	only	one	level	deep,	
and	no	infinite	 recursion	occurs.



Multi-Level	Recursion

• In	general	recursive	calls	don’t	stop	a	just	one	level	
deep	– a	recursive	call	does	not	need	to	reach	a	
stopping	case	immediately.

• In	the	last	lecture,	we	have	showed	two	examples	
with	multiple	level	recursions

•As	an	example	to	show	that	there	is	no	infinite	
recursion,	we	are	going	to	re-write	the	power
function	– use	a	new	function	name	pow



power(x,	n)	=>		pow(x,n)

double power(double x, int n)
// Library facilities used: cassert

{
double product; // The product of x with itself n times
int count;
if (x == 0) assert(n > 0);
if (n >= 0)  // stopping case
{

product = 1;
for (count = 1; count <= n; count++)

product = product * x;
return product;

}
else // recursive call

return 1/power(x, -n);
}

Computes powers of the form xn

change this into a 
recursive call based on 
the observation
xn=x xn-1 if n>0



pow	(x,	n):	Alternate	Implementation

double pow(double x, int n)
// Library facilities used: cassert
{

if (x == 0)
{   // x is zero, and n should be positive

assert(n > 0);
return 0;

}
else if (n == 0)

return 1;
else if (n > 0)

return x * pow(x, n-1);
else // x is nonzero, and n is negative

return 1/pow(x, -n);
}

Computes powers of the form xn

All of the cases:
x         n        xn

=0        <0   underfined
=0        =0   underfined
=0        > 0    0
!=0       < 0    1/x-n

!=0       = 0     1
!=0       > 0    x*xn-1



How	to	ensure	NO	Infinite	Recursion	

•when	the	recursive	calls	go	beyond	one	level	deep
• You	can	ensure	that	a	stopping	case	is	eventually	
reached	by	defining	a	numeric	quantity	called	
variant expression - without	really	tracing	
through	the	execution

• This	quantity	must	associate	each	legal	recursive	
call	to	a	single	number,	which	changes	for	each	call	
and	eventually	satisfies	the	condition	to	go	to	the	
stopping	case



Variant	Expression	for	pow

• The	variant	expression	is	abs(n)+1	when	n	is	negative	and
• the	variant	expression	is	n	when	n	is	positive
• A	sequence	of	recursion	call

• pow(2.0,	 -3)	has	a	variant	expression	abs(n)+1,	which	is	4;	it	makes	a	recursive	
call	of	pow(2.0,	3)



Variant	Expression	for	pow

• The	variant	expression	is	abs(n)+1	when	n	is	negative	and
• the	variant	expression	is	n	when	n	is	positive
• A	sequence	of	recursion	call

• pow(2.0,	3)	has	a	variant	expression	n,	
which	is	3;	it	makes	a	recursive	call	of	pow(2.0,	2)



Variant	Expression	for	pow

• The	variant	expression	is	abs(n)+1	when	n	is	negative	and
• the	variant	expression	is	n	when	n	is	positive
• A	sequence	of	recursion	call

• pow(2.0,	2)	has	a	variant	expression	n,	
which	is	2;	it	makes	a	recursive	call	of	pow(2.0,	1)



Variant	Expression	for	pow

• The	variant	expression	is	abs(n)+1	when	n	is	negative	and
• the	variant	expression	is	n	when	n	is	positive
• A	sequence	of	recursion	call

• pow(2.0,	1)	has	a	variant	expression	n,	
which	is	1;	it	makes	a	recursive	call	of	pow(2.0,	0)



Variant	Expression	for	pow

• The	variant	expression	is	abs(n)+1	when	n	is	negative	and
• the	variant	expression	is	n	when	n	is	positive
• A	sequence	of	recursion	call

• pow(2.0,	0)	has	a	variant	expression	n,	
which	is	0;	this	is	the	stopping	 case.



Ensuring	NO	Infinite	Recursion

• It	is	enough	to	find	a	variant	expression	and	a	
threshold	with	the	following	properties	(p446):
• Between	one	call	of	the	function	and	any	succeeding	
recursive	call	of	that	function,	the	value	of	the	variant	
expression	decreases	by	at	least	some	fixed amount.

• What	is	that	fixed	amount	of	pow(x,n)?
• If	the	function	is	called	and	the	value	of	the	variant	
expression	is	less	than	or	equal	to	the	threshold,	 then	the	
function	terminates	without	making	any	recursive	call

• What	is	the	threshold	of	pow(x,n)

• Is	this	general	enough?		



Reasoning	about	the	Correctness

• First	show	NO	infinite	recursion	then show	the	
following	two	conditions	are	also	valid:
• Whenever	the	function	makes	no	recursive	calls,	show	
that	it	meets	its	pre/post-condition	contract	(BASE	STEP)

• Whenever	the	function	is	called,	by	assuming	all	the	
recursive	calls	it	makes	meet	their	pre-post	condition	
contracts,	show	that	the	original	call	will	also	meet	its	
pre/post	contract	(INDUCTION	STEP)



pow	(x,	n):	Alternate	Implementation

double pow(double x, int n)
// Library facilities used: cassert
{

if (x == 0)
{   // x is zero, and n should be positive

assert(n > 0);
return 0;

}
else if (n == 0)

return 1;
else if (n > 0)

return x * pow(x, n-1);
else // x is nonzero, and n is negative

return 1/pow(x, -n);
}

Computes powers of the form xn

All of the cases:
x         n        xn

=0        <0   underfined
=0        =0   underfined
=0        > 0    0
!=0       < 0    1/x-n

!=0       = 0     1
!=0       > 0    x*xn-1



Summary	of	
Reason	about	Recursion

• First	check	the	function	always	terminates	(not	infinite	recursion)
• next	make	sure	that	the	stopping	cases	work	correctly
• finally,	for	each	recursive	case,	pretending	that	you	know	the	
recursive	calls	will	work	correctly,	use	this	to	show	that	the	recursive	
case	works	correctly



Reading,	Exercises	and	Assignment

•Reading	
• Section	9.3

• Self-Test	Exercises
• 13-17

•Assignment	5	online
• four	recursive	functions
• due	on	Wednesday,	November	9,	2016

• Exam	2	– November	07	(Monday)
• Come	to	class	on	Wed	(Nov	2)	for	reviews	and	assignment		
discussions


