Data Structure

- Section FG

Lecture 14
 Reasoning about Recursion

Instructor: Feng HU
Department of Computer Science
City College of New York

Outline of This Lecture

- Recursive Thinking: General Form
- recursive calls and stopping cases
- Infinite Recursion
- runs forever
- One Level Recursion
- guarantees to have no infinite recursion
- How to Ensure No Infinite Recursion
- if a function has multi level recursion
- Inductive Reasoning about Correctness
- using mathematical induction principle

Recursive Thinking: General Form

- Recursive Calls
- Suppose a problem has one or more cases in which some of the subtasks are simpler versions of the original problem. These subtasks can be solved by recursive calls
- Stopping Cases /Base Cases
- A function that makes recursive calls must have one or more cases in which the entire computation is fulfilled without recursion. These cases are called stopping cases or base cases

Infinite Recursion

- In all our examples, the series of recursive calls eventually reached a stopping case, i.e. a call that did not involve further recursion
- If every recursive call produce another recursive call, then the recursion is an infinite recursion that will, in theory, run forever.
- Can you write one?

Example: power $(x, n)=x^{n}$

- Rules:
- $\operatorname{power}(3.0,2)=3.0^{2}=9.0$
- $\operatorname{power}(4.0,3)=4.0^{3}=64.0$
- $\operatorname{power}(x, 0)=x^{0}=1$ if $x!=0$
- $x^{n}=1 / x^{n}$ where $x<>0, n>0$
- $\operatorname{power}(3.0,-2)=3.0^{-2}=1 / 3.0^{2}=1 / 9$
- 0^{n}
- = 0 if $n>0$
- invalid if $n<=0$ (and $x=0$)

ipower(x, n): Infinite Recursion

Computes powers of the form x^{n}

double ipower(double x, int n)
// Library facilities used: cassert
\{
if ($x==0$)
assert(n > 0); //precondition
if $(\mathrm{n}>=0)$
\{
return ipower(x,n); // postcondition 1
\}
else
\{
return 1/ipower(x, -n); // postcondition 2
\}
\}

ipower(x, n): Infinite Recursion

Computes powers of the form x^{n}
double ipower(double x, int n)
// Library facilities used: cassert
\{
if ($x==0$)
assert(n > 0); //precondition
if ($\mathrm{n}>=0$)
\{
return ipower(x,n); // need to be developed into a stopping case \} else
\{
return 1/ipower(x, -n); // recursive call
\}
\}

power(x, n): One Level Recursion

Computes powers of the form x^{n}
double power(double x, int n)
// Library facilities used: cassert
\{
double product; // The product of x with itself n times
int count;
if ($x==0$) assert($n>0$);
if ($n>=0$) // stopping case
\{
product = 1;
for (count $=1$; count $<=n$; count++) product $=$ product ${ }^{*}$ x; return product;
else // recursive call
return 1/power(x, -n);
\}

One Level Recursion

- First general technique for reasoning about recursion:
- Suppose that every case is either a stopping case or it makes a recursive call that is a stopping case. Then the deepest recursive call is only one level deep, and no infinite recursion occurs.

Multi-Level Recursion

- In general recursive calls don't stop a just one level deep - a recursive call does not need to reach a stopping case immediately.
- In the last lecture, we have showed two examples with multiple level recursions
- As an example to show that there is no infinite recursion, we are going to re-write the power function - use a new function name pow

$\operatorname{power}(x, n)=>\operatorname{pow}(x, n)$

Computes powers of the form x^{n}

double power(double x, int n)
// Library facilities used: cassert
\{
double product; // The product of x with itself n times
int count;
if $(x==0)$ assert($n>0$);
if ($\mathrm{n}>=0$) // stopping case
\{

for (count $=1$; count $<=\mathrm{n}$; count++)
product = product * x ;
return product;
\}
else // recursive call
return 1/power(x, -n);
\}

pow (x, n): Alternate Implementation

Computes powers of the form x^{n}
double pow(double x, int n) // Library facilities used: cassert \{
if $(x==0)$
\{ $/ / x$ is zero, and n should be positive assert($\mathrm{n}>0$); return 0;
\}
else if ($\mathrm{n}==0$)
return 1;
else if $(n>0)$ return x * $\operatorname{pow}(x, n-1)$;
else // x is nonzero, and n is negative return 1/pow(x, -n);

All of the cases:

x	n	x^{n}
$=0$	<0	underfined
$=0$	$=0$	underfined
$=0$	>0	0
$!=0$	<0	$1 / \mathrm{X}^{-n}$
$!=0$	$=0$	1
$!=0$	>0	$x^{*} \mathrm{X}^{\mathrm{n}-1}$

How to ensure NO Infinite Recursion

- when the recursive calls go beyond one level deep
- You can ensure that a stopping case is eventually reached by defining a numeric quantity called variant expression - without really tracing through the execution
- This quantity must associate each legal recursive call to a single number, which changes for each call and eventually satisfies the condition to go to the stopping case

Variant Expression for pow

- The variant expression is abs(n)+1 when n is negative and
- the variant expression is n when n is positive
- A sequence of recursion call
- pow(2.0, -3) has a variant expression abs(n)+1, which is 4; it makes a recursive call of pow(2.0, 3)

Variant Expression for pow

- The variant expression is abs(n)+1 when n is negative and
- the variant expression is n when n is positive
- A sequence of recursion call
- pow(2.0, 3) has a variant expression n, which is 3 ; it makes a recursive call of pow(2.0, 2)

Variant Expression for pow

- The variant expression is abs(n)+1 when n is negative and
- the variant expression is n when n is positive
- A sequence of recursion call
- pow(2.0, 2) has a variant expression n, which is 2 ; it makes a recursive call of pow(2.0, 1)

Variant Expression for pow

- The variant expression is abs(n) +1 when n is negative and
- the variant expression is n when n is positive
- A sequence of recursion call
- pow $(2.0,1)$ has a variant expression n, which is 1 ; it makes a recursive call of pow(2.0, 0)

Variant Expression for pow

- The variant expression is abs(n)+1 when n is negative and
- the variant expression is n when n is positive
- A sequence of recursion call
- pow(2.0, 0) has a variant expression n, which is 0 ; this is the stopping case.

Ensuring NO Infinite Recursion

- It is enough to find a variant expression and a threshold with the following properties (p446):
- Between one call of the function and any succeeding recursive call of that function, the value of the variant expression decreases by at least some fixed amount.
- What is that fixed amount of pow (x, n) ?
- If the function is called and the value of the variant expression is less than or equal to the threshold, then the function terminates without making any recursive call
- What is the threshold of pow(x, n)
- Is this general enough?

Reasoning about the Correctness

- First show NO infinite recursion then show the following two conditions are also valid:
- Whenever the function makes no recursive calls, show that it meets its pre/post-condition contract (BASE STEP)
- Whenever the function is called, by assuming all the recursive calls it makes meet their pre-post condition contracts, show that the original call will also meet its pre/post contract (INDUCTION STEP)

pow (x, n): Alternate Implementation

Computes powers of the form x^{n}
double pow(double x, int n) // Library facilities used: cassert \{
if $(x==0)$
\{ $/ / x$ is zero, and n should be positive assert($\mathrm{n}>0$); return 0;
\}
else if ($\mathrm{n}==0$)
return 1;
else if $(n>0)$ return x * $\operatorname{pow}(x, n-1)$;
else // x is nonzero, and n is negative return 1/pow(x, -n);

All of the cases:

x	n	x^{n}
$=0$	<0	underfined
$=0$	$=0$	underfined
$=0$	>0	0
$!=0$	<0	$1 / \mathrm{X}^{-n}$
$!=0$	$=0$	1
$!=0$	>0	$x^{*} \mathrm{X}^{\mathrm{n}-1}$

Summary of Reason about Recursion

- First check the function always terminates (not infinite recursion)
- next make sure that the stopping cases work correctly
- finally, for each recursive case, pretending that you know the recursive calls will work correctly, use this to show that the recursive case works correctly

Reading, Exercises and Assignment

- Reading
- Section 9.3
- Self-Test Exercises
- 13-17
- Assignment 5 online
- four recursive functions
- due on Wednesday, November 9, 2016
- Exam 2 - November 07 (Monday)
- Come to class on Wed (Nov 2) for reviews and assignment discussions

