
CSC212
Data Structure

- Section FG

Lecture	13
Recursive	Thinking

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

Outline	of	This	Lecture

• Start	with	an	Example	of	Recursion
• “racing	car”	– not	in	the	textbook
• using	slides	(provided	by	the	authors)

• Recursive	Thinking:	General	Form
• Tracing	Recursive	Calls	

• using	blackboard	to	show	the	concepts

• A	Closer	Look	at	Recursion
• activation	record	and	runtime	stack

Recursive	Thinking

•Chapter	9	introduces	the	technique	
of	recursive	programming.

•As	you	have	seen,	recursive	
programming	involves	spotting	
smaller	occurrences	of	a	problem	
within	the	problem	itself.

• This	presentation	gives	an	
additional	example,	which	is	not	in	
the	book.Data Structures

and Other Objects
Using C++

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

The	Car	Racer	Slides	were	modified	from

A	Car	Object

• To	start	the	example,	think	about	
your	favorite	family	car

A	Car	Object

• To	start	the	example,	think	about	
your	favorite	family	car

A	Car	Object

• To	start	the	example,	think	about	
your	favorite	family	car

A	Car	Object

• To	start	the	example,	think	about	
your	favorite	family	car

A	Car	Object

• To	start	the	example,	think	about	
your	favorite	family	car

• Imagine	that	the	car	is	controlled	
by	a	radio	signal	from	a	computer

A	Car	Class

• To	start	the	example,	think	about	
your	favorite	family	car

• Imagine	that	the	car	is	controlled	
by	a	radio	signal	from	a	computer

• The	radio	signals	are	generated	by	
activating	member	functions	of	a	
Car	object

class Car
{
public:

. . .
};

class Car
{
public:

Car(int car_number);
void move();
void turn_around();
bool is_blocked();

private:
{ We don't need to know the private fields! }
. . .

};

Member	Functions	for	the	Car	Class

int main()
{

Car racer(7);

. . .

The	Constructor

When	we	declare	a	Car
and	activate	the	constructor,	the	
computer	makes	a	radio	link	with	a	
car	that	has	a	particular	number.	

int main()
{

Car racer(7);

racer.turn_around();
. . .

The	turn_around	Function

When	we	activate	turn_around,	the	
computer	signals	the	car	to	turn	180	
degrees.

int main()
{

Car racer(7);

racer.turn_around();
. . .

The	turn_around	Function

When	we	activate	turn_around,	the	
computer	signals	the	car	to	turn	180	
degrees.

int main()
{

Car racer(7);

racer.turn_around();
racer.move();
. . .

The	move	Function

When	we	activate	move,	the	
computer	signals	the	car	to	move	
forward	one	foot.	

int main()
{

Car racer(7);

racer.turn_around();
racer.move();
. . .

The	move	Function

When	we	activate	move,	the	
computer	signals	the	car	to	move	
forward	one	foot.	

int main()
{

Car racer(7);

racer.turn_around();
racer.move();
if (racer.is_blocked())
cout << "Cannot move!";

. . .

The	is_blocked()	Function

The	is_blocked	member	function	
detects	barriers.	

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...
• ...then	the	car	is	turned	around...

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...
• ...then	the	car	is	turned	around...
• ...and	returned	to	its	original	location,	facing	the	opposite	way.

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...
• ...then	the	car	is	turned	around...
• ...and	returned	to	its	original	location,	facing	the	opposite	way.

Your	Mission

• Write	a	function	which	will	move	a	Car	forward	until	it	reaches	a	barrier...
• ...then	the	car	is	turned	around...
• ...and	returned	to	its	original	location,	facing	the	opposite	way.

void ricochet(Car& moving_car);

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

void ricochet(Car& moving_car);

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

moving_car.move();
. . .

moving_car.move();
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

This makes the problem a bit
smaller. For example, if the
car started 100 feet from the
barrier...
100 ft.

moving_car.move();
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

This makes the problem a bit
smaller. For example, if the
car started 100 feet from the
barrier... then after activating
move once, the distance is
only 99 feet.

99
ft.

moving_car.move();
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

We now have a
smaller version of
the same problem
that we started with.

99 ft.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

Make a recursive
call to solve the
smaller problem.

99 ft.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

The recursive call
will solve the
smaller problem.
99 ft.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

99 ft.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

100 ft.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

This recursive
function follows a
common pattern that
you should recognize.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

When the problem is
simple, solve it with
no recursive call.
This is the base case
or the stopping case.

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

When the problem is
more complex, start by
doing work to create a
smaller version of the
same problem...

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

...use a recursive call to
completely solve the
smaller problem...

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode	for	ricochet

❶ if	moving_car.is_blocked(),	then	the	car	is	already	at	the	barrier.		In	
this	case,	just	turn	the	car	around.

❷ Otherwise,	the	car	has	not	yet	reached	the	barrier,	 so	start	with:

void ricochet(Car& moving_car);

...and finally do any
work that's needed to
complete the solution
of the original
problem..

Implementation	of	ricochet

void ricochet(Car& moving_car)
{

if (moving_car.is_blocked())
moving_car.turn_around(); // Base case

else
{ // Recursive pattern

moving_car.move();
ricochet(moving_car);
moving_car.move();

}
}

Look for this
pattern in the other
examples of
Chapter 9.

An	Exercise

Can you write ricochet as a new
member function of the Car class,
instead of a separate function?

You have 2 minutes to
write the implementation.

void Car::ricochet()
{

. . .

An	Exercise

void Car::ricochet()
{

if (is_blocked())
turn_around(); // Base case

else
{ // Recursive pattern

move();
ricochet();
move();

}
}

One solution:

Recursive	Thinking:	General	Form

•Recursive	Calls	
• Suppose	a	problem	has	one	or	more	cases	in	which	some	
of	the	subtasks	are	simpler	versions	of	the	original	
problem.	These	subtasks	can	be	solved	by	recursive	calls

• Stopping	Cases	/Base	Cases
• A	function	that	makes	recursive	calls	must	have	one	or	
more	cases	in	which	the	entire	computation	is	fulfilled	
without	recursion.	These	cases	are	called	stopping	cases	
or	base	cases

Tracing	Recursive	Calls:	Ricochet

void Car::ricochet()
{

if (is_blocked())
A. turn_around(); // Base case

else
{ // Recursive pattern

B. move();
C. ricochet();
D. move();
E }
}

Do it by hand if car is 4 feet away from the barrier

A	Close	Look	at	Ricochet	Recursion

• The	recursive	case	and	the	stopping	case

•Activation	record
• The	return	location	only	in	this	example	– other	
information	is	kept	in	the	object	racer	

• The	running	stack	
• The	collection	of	the	activation	records	is	stored	in	a	stack	
data	structure

Example	2:	Write	Number	Vertically

• Task
• Write	a	non-negative	integer	to	the	screen	with	its	decimal	digits	stacked	
vertically

• for	example:

Input

1234

Output:
1

2

3

4

A	possible	function

void write_vertical (unsigned int number)
// precondition: number >=0
// Postcondition: The digits of number have been written, stacked vertically.
{ assert(number>=0);

do
{

cout << number % 10 << endl; // Write a digit
number = number / 10;

} while (number !=0);
}

Write an integer number vertically

Input

1234

Output:
4

3

2

1

Approach	1:	using	a	stack

void stack_write_vertical (unsigned int number)
// Postcondition: The digits of number have been written, stacked vertically.
{
stack<int> s;
do
{

s.push(number % 10); // push a digit in the stack
number = number / 10;

} while (number !=0);
while (!(s.empty()))
{

cout << s.top()<< endl; //print a digit from the stack
s.pop();

}
}

Write an integer number vertically

Approach	2:	Using	Recursion

void recursive_write_vertical(unsigned int number)
// Postcondition: The digits of number have been written, stacked vertically.
{

if (number < 10) // stopping case
cout << number << endl; // Write the one digit

else // including recursive calls
{

recursive_write_vertical(number/10); // Write all but the last digit
cout << number % 10 << endl; // Write the last digit

}
}

Write an integer number vertically

Tracing	Recursive	Calls

void recursive_write_vertical_2(unsigned int number)
// Postcondition: The digits of number have been written, stacked vertically.
{

if (number < 10) // stopping case
A cout << number << endl; // Write the one digit

else // including recursive calls
{

B recursive_write_vertical(number/10); // Write all but the last digit
C cout << number % 10 << endl; // Write the last digit
D }
}

Write an integer number vertically

A	Closer	Look	at	the	Recursion

•Recursive	Function
• Recursive	calls
• Stopping	(Base)	cases

•Run-time	Stack
• the	collection	of	activation	records	is	stored	in	the	stack

•Activation	Record	- a	special	memory	block	including
• return	location	of	a	function	call
• values	of	the	formal	parameters	and	local	variables

Recursive	Thinking:	General	Form

•Recursive	Calls	
• Suppose	a	problem	has	one	or	more cases	in	which	some	
of	the	subtasks	are	simpler	versions	of	the	original	
problem.	These	subtasks	can	be	solved	by	recursive	calls

• Stopping	Cases	/Base	Cases
• A	function	that	makes	recursive	calls	must	have	one	or	
more cases	in	which	the	entire	computation	is	fulfilled	
without	recursion.	These	cases	are	called	stopping	cases	
or	base	cases

Self-Tests	and	More	Complicated	Exmaples

•An	Extension	of	write_vertical (page	436)
• handles	all	integers	including	negative	ones
• Hints:	you	can	have	more	than	one	recursive	calls	or	
stopping	cases	in	your	recursive	function

•Homework
• Reading:		Section	9.1
• Self-Test:	Exercises	1-8
• Advanced	Reading:	Section	9.2
• Assignment	5	online,	due	Nov	9,	2016

super_write_vertical

void super_write_vertical(int number)
// Postcondition: The digits of the number have been written, stacked vertically.
// If number is negative, then a negative sign appears on top.
// Library facilities used: iostream.h, math.h
{

if (number < 0)
{

cout << '-' << endl; // print a negative sign
super_write_vertical(abs(number)); // abs computes absolute value
// This is Spot #1 referred to in the text.

}
else if (number < 10)

cout << number << endl; // Write the one digit
else
{

super_write_vertical(number/10); // Write all but the last digit
// This is Spot #2 referred to in the text.
cout << number % 10 << endl; // Write the last digit

}
}

Write any integer number vertically

