
@ Feng HU, 2016 1

CSC212
Data Structure

- Section FG

Lecture	10
The	Bag	and	Sequence	Classes	with	Linked	Lists

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

@ Feng HU, 2016 2

Reviews:	Node	and	Linked	List

• Node
• a	class		with	a	pointer	 to	an	object	of	the	node	class
• core	structure	for	the	linked	 list
• two	versions	of	the	“link”	functions

• why	and	how?
•

@ Feng HU, 2016 3

The	Complete node Class	Definition

• The	node	class	is	fundamental	to	linked	lists
• The	private	member	variables

• data_field
• link_field

• The	member	functions	include:
• A	constructor
• Set	data	and	set	link
• Retrieve	data	and	retrieve	link

@ Feng HU, 2016 4

class node
{
public:

// TYPEDEF
typedef double value_type;

// CONSTRUCTOR
node(

const value_type& init_data = value_type(),
node* init_link = NULL

)
{ data = init_data; link = init_link; }

// Member functions to set the data and link fields:
void set_data(const value_type& new_data) { data = new_data; }
void set_link(node* new_link) { link = new_link; }

// Constant member function to retrieve the current data:
value_type data() const { return data; }

// Two slightly different member functions to retrieve
// the current link:
const node* link() const { return link; }
node* link() { return link;}

private:
value_type data;
node* link;

};

default argument given
by the value_type
default constructor

Why TWO? p. 213-4

@ Feng HU, 2016 5

Reviews:	Node	and	Linked	List

• Linked	Lists	Traverse
• How	to	access	the	next	node	by	using	 link	pointer	of	the	current	node
• the	special	for	loop

size_t list_length(const node* head_ptr)
{

const node *cursor;
size_t count = 0;
for (cursor = head_ptr; cursor != NULL; cursor = cursor->link())

count++;
return count;

}

@ Feng HU, 2016 6

Reviews:	Node	and	Linked	List

• Insert	
• Insert	at	the	head	

• set	the	head_ptr	and	the	link	of	the	new	node	correctly
• Insert	at	any	location

• cursor	pointing	to	the	current	node	
• need	a	pre-cursor	to	point	to	the	node	before	the	current	node	(two	approaches)
• the	third	approach:	doubly	linked	list

@ Feng HU, 2016 7

Reviews:	Node	and	Linked	List

• Delete	
• Delete	at	the	head	

• set	the	head_ptr	correctly
• release	 the	memory	of	the	deleted	node

• Delete	at	any	location
• cursor	pointing	to	the	current	node	
• need	a	pre-cursor	to	point	to	the	node	before	the	current	node	(two	approaches)
• the	third	approach:	doubly	linked	list

@ Feng HU, 2016 8

Key	points	you	need	to	know

• Linked	List	Toolkit	uses	the	node	class	which	has
• set	and	retrieve	functions

• The	functions	in	the	Toolkit	are	not	member	
functions	of	the	node	class
• length,	insert(2),	remove(2),	search,	locate,	copy,...
• compare	their	Big-Os	with	similar	functions	for	an	array

• They	can	be	used	in	various	container	classes,	such	
as	bag,	sequence,	etc.

Toolkit Code

@ Feng HU, 2016 9

Container	Classes	using	Linked	Lists

• Bag	Class	with	a	Linked	List
• Specification
• Class	definition
• Implementation
• Testing	and	Debugging

• Sequence	Class	with	a	Linked	List
• Design	suggestion	– difference	from	bag

•Arrays	or	Linked	Lists:	which	approach	is	better?
• Dynamic	Arrays	
• Linked	Lists
• Doubly	Linked	Lists

@ Feng HU, 2016 10

Our	Third	Bag	- Specification

• The	documentation
• nearly	identical	to	our	previous	bag
• The	programmer	uses	the	bag	do	not	need	to	know	know	
about	linked	lists.

• The	difference
• No	worries	about	capacity	therefore

• no	default	capacity
• no	reserve	function

• because	our	new	bag	with	linked	list	can	grow	or	shrink	
easily!

@ Feng HU, 2016 11

Our	Third	Bag	– Class	Definition

• The	invariant	of	the	3rd bag	class
• the	items	in	the	bag	are	stored	in	a	linked	list	(which	is	dynamically	allocated)
• the	head	pointer	of	the	list	is	stored	in	the	member	variable	head_ptr of	the	
class	bag

• The	total	number	of	items	in	the	list	is	stored	in	the	member	variable	
many_nodes.

• The	Header	File	(code)

@ Feng HU, 2016 12

Our	Third	Bag	– Class	Definition

•How	to	match	bag::value_type with	
node::value_type

• Following	the	rules	for	dynamic	memory	usage
• Allocate	and	release	dynamic	memory	
• The	law	of	the	Big-Three

class bag
{
public:

typedef node::value_type value type;
......

}

@ Feng HU, 2016 13

Our	Third	Bag	- Implementation

• The	Constructors
• default	constructor	
• copy	constructor

• Overloading	the	Assignment	Operator
• release	and	re-allocate	dynamic	memory
• self-assignment	check

• The	Destructor
• return	all	the	dynamic	memory	to	the	heap	

• Other	functions	and	the		code

@ Feng HU, 2016 14

Sequence	Class	with	Linked	List

• Compare	three	implementations
• using	a	fixed	size	array	(assignment	 2)
• using	a	dynamic	array	(assignment	3)
• using	a	linked	 list	(assignment	4)

• What	are	the	differences?
• member	variables
• value	semantics	
• Performance	(time	and	space)

@ Feng HU, 2016 15

Sequence	– Design	Suggestions

• Five	private	member	variables	
• many_nodes:	number	of	nodes	in	the	list
• head_ptr and	tail_ptr :	the	head	and	tail	pointers	of	the	
linked	list		

• why	tail_ptr	 	- for	attach	when	no	current	item
• cursor :	pointer	to	the	current	item	(or	NULL)
• precursor:	pointer	to	the	item	before	the	current	item	

• for	an	easy	insert	(WHY)

• Don’t	forget	
• the	dynamic	allocation/release
• the	value	semantics	and	
• the	Law	of	the	Big-Three

@ Feng HU, 2016 16

Sequence	– Value	Semantics

• Goal	of	assignment	and	copy	constructor
• make	one	sequence	equals	to	a	new	copy	of	another

• Can	we	just	use	list_copy in	the	Toolkit?
• list_copy(source.head_ptr, head_ptr, tail_ptr);

• Problems	(deep	copy	– new	memory	allocation)
• many_nodes		OKAY
• head_ptr	and	tail_ptr	OKAY	
• How	to	set	cursor	and	precursor	?

@ Feng HU, 2016 17

Dynamic	Arrays	vs	Linked	Lists

• Arrays	are	better	at	random	access
• O	(1)	vs.	O(n)

• Linked	lists	are	better	at	insertions/	deletions	at	a	
cursor
• O(1)	vs	O(n)

• Doubly	linked	lists	are	better	for	a	two-way	cursor
• for	example	for	insert	O(1)	vs.	O(n)

•Resizing	can	be	Inefficient	for	a		Dynamic	Array
• re-allocation,	copy,	release	

@ Feng HU, 2016 18

Reading	and	Programming	Assignments

• Reading	after	Class
• Chapter	6

• Programming	Assignment	4
• Detailed	guidelines	 online!

