
@ Feng HU, 2016 1

CSC212
Data Structure

- Section FG

Lecture	8
Dynamic	Classes	and	

the	Law	of	the	Big	Three
Instructor:		Feng	HU

Department	of	Computer	Science	
City	College	of	New	York

@ Feng HU, 2016 2

Why	Dynamic	Classes

• Limitation	of	our	bag	class
• bag::CAPACITY	constant	determines	the	capacity	of	every	
bag

• wasteful	and	hard	to	reuse
• Solution:	

• provide	control	over	size	in	running	time,	by
• pointers	and	dynamic	memory
• =>	dynamic	arrays
• =>	dynamic	classes

@ Feng HU, 2016 3

Dynamic	Classes	New	Features	(Ch	4.3–4)

• Pointers	Member	Variables
• Dynamic	Memory	Allocation	(where	and	how)
• Value	Semantics	(what’s	new?)

• assignment	operator	overloading
• your	own	copy	constructor

• Introducing	Destructor
• Conclusion:	the	Law	of	the	Big	Three

@ Feng HU, 2016 4

Pointer	Member	Variable

• The	Static	bag • The		Dynamic	bag

// From bag1.h in Section 3.1
class bag
{
public:

static const size_t CAPACITY = 20;
...

private:
value_type data[CAPACITY];
size_type used;

};

// From bag2.h in Section 4.3
class bag
{
public:

...
private:

value_type *data;
size_type used;
size_type capacity;

};

@ Feng HU, 2016 5

Invariant	of	the	Dynamic	bag

• the	number	of	items	is	in	the	member	variable	used
• The	actual	items	are	stored	in	a	partially	filled	array.	The	array	is	a	
dynamic	array,	pointed	to	by	the	pointer	variable	data

• The	total	size	of	the	dynamic	array	is	the	member	variable	capacity

❐Invariant is about rules of implementation...

@ Feng HU, 2016 6

Allocate	Dynamic	Memory:	Where?

• In	Old	Member	Functions
• constructor – how	big	is	the	initial	capacity?
• insert – if	bag	is	full,	how	many	more?
• +/+= operators – how	to	combine	 two	bags?

• New	Member	Functions
• reserve – explicitly	adjust	the	capacity

• Example
• constructor	with	default	size

@ Feng HU, 2016 7

Allocate	Dynamic	Memory:	How?

• In	constructor:
• why	initialize?
• how?

• default
• specific	 size

// From bag2.h in Section 4.3
class bag
{
public:

static const size_t DEFAULT_CAPACITY = 20;
bag(size_type init_cap = DEFAULT_CAPACITY);

...
private:

value_type *data;
size_type used;
size_type capacity;

}; // From implementation file bag2.cxx
bag::bag(size_type init_cap)
{

data = new value_type[init_cap];
capacity = init_cap;
used = 0;

}

@ Feng HU, 2016 8

Value	Semantics

•Assignment	operator
• y	=	x;

•Copy	constructor
• bag	y(x);	//	bag	y	=	x;

Automatic	assignment	operator	and	copy	
constructor
• copy	all	the	member	variables	(data,	used,	capacity)	from	
object	x	to	object	y

• but	our	days	of	easy	contentment	are	done!

@ Feng HU, 2016 9

Failure	in	auto	assignment	operator

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 0 984

capacity used data

y 5 0 964

? ? ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Question: What will happen after executing lines 2 – 5?

@ Feng HU, 2016 10

Failure	in	auto	assignment	operator

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 2 984

capacity used data

y 5 0 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Question: What will happen after executing lines 2 – 5?

@ Feng HU, 2016 11

Failure	in	auto	assignment	operator

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 2 984

capacity used data

y 4 2 984

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Question: What will happen after executing lines 2 – 5?

lost memory

@ Feng HU, 2016 12

Failure	in	auto	assignment	operator

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 3 984

capacity used data

y 4 2 984

18 19 20 ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Consequence: Change to x’ array will also change y’s array

lost memory

@ Feng HU, 2016 13

If	we	want	y	to	have	its	own	dynamic	array

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 2 984

capacity used data

y 5 0 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

@ Feng HU, 2016 14

Dynamic	memory	allocation	is	needed

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 2 984

capacity used data

y 4 2 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Answer: overloading the assignment operator =
memory de-allocated

18 19 ? ?

@ Feng HU, 2016 15

Dynamic	memory	allocation	is	needed

x
bag x(4), y(5);
x.insert(18);
x.insert(19);
y=x;
x.insert(20);

4 2 984

capacity used data

y 4 2 964

18 19 20 ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Answer: overloading the assignment operator =
memory de-allocated

18 19 ? ?

@ Feng HU, 2016 16

Solution:	overloading	assignment	operator

• Your	own	assignment	operator
• C++	Requires	the	overloaded	 	assignment	operator	to	be	a	member	
function

bag x, y;		//	OR	bag x(4), y(5); //	OR....
y=x;	//	y.operator=(x);	

void bag::operator=(const bag&
source)

// Postcondition: The bag that
activated this function has the
same items and capacity as
source

A 5-minute Quiz: write your own implementation - turn in

// From bag2.h in Section 4.3
class bag
{
public:

static const size_t DEFAULT_CAPACITY = 20;
bag(size_type init_cap = DEFAULT_CAPACITY);

...
private:

value_type *data;
size_type used;
size_type capacity;

};

// From implementation file bag2.cxx
bag::bag(size_type init_cap)
{

data = new value_type[init_cap];
capacity = init_cap;
used = 0;

}

@ Feng HU, 2016 17

Implementation	of	operator=

• y	=	x;
• y	ó *this
• x	ó source

void bag::operator =(const bag& source)
// Library facilities used: algorithm
{

value_type *new_data;

// Check for possible self-assignment:
if (this == &source)

return;

// If needed, allocate an array with a different size:
if (capacity != source.capacity)
{

new_data = new value_type[source.capacity];
delete [] data; // make sure all valid before delete!!!
data = new_data;
capacity = source.capacity;

}

// Copy the data from the source array:
used = source.used;
copy(source.data, source.data + used, data);

}

@ Feng HU, 2016 18

The	2nd part	of	the	value	semantics
copy	constructor	

@ Feng HU, 2016 19

Break

• Programming	Assignment	2	Due	Sept	28	(Wed)!

• Assignment	3	will	be	online	,	due	Oct	12	(Wed)

• Next	Class:		Exam	review	
• Sep	28	Wednesday:	First	Exam	4:00	– 5:30	pm

@ Feng HU, 2016 20

The	2nd part	of	the	value	semantics
copy	constructor	

@ Feng HU, 2016 21

Auto	Copy	Constructor:	shallow	copy

x
bag x(4)
bag y(x);
x.insert(18);
x.insert(19);

4 0 984

capacity used data

y 4 0 984

? ? ? ?

[0] [1] [2] [3]

The only difference with auto assignment is:

y does not have its own data

@ Feng HU, 2016 22

Failure	in	auto	copy	constructor

x
bag x(4);
bag y(x);
x.insert(18);
x.insert(19);

4 2 984

capacity used data

y 4 0 984

18 19 ? ?

[0] [1] [2] [3]

change to x also changes y

@ Feng HU, 2016 23

Deep	copy:	providing	your	own	copy	constructor	

•Questions on	Implementation		(homework!)
• do	you	need	to	check	self-copy

• bag	y(x);	//	never	have	bag	y(y);
• do	you	need	to	delete	old	bag?

•Questions on	Usage	
• 4	different	ways	that	copy	constructor	is	used

bag::bag(const bag& source)
// Postcondition: The bag that has been constructed

has the same items and capacity as source

@ Feng HU, 2016 24

Four	common	situations

• Declaration
bag	y(x);

• Declaration	with	Alternate	Syntax
bag	y	=	x	;

• Returning	an	object	from	a	function
bag	union(const	 bag&	s1,	const	bag&	s2);

• Value	parameter	is	an	object
void	temp_bag_copy(bag	 clone);

@ Feng HU, 2016 25

What’s	missing?
allocate	dynamic	memory	via	new,
take	care	of	the	value	semantics,

....?

@ Feng HU, 2016 26

De-allocation	of	dynamic	memory

• Return	an	object’s	dynamic	memory	to	the	heap	when	the	object	is	
no	longer	in	use

• Where	and	How?	– Two	ways
• Take	care	of	it	yourself	

• delete	dynamic	data of	an	object	after	you’re	done	with	it
• let	the	program	do	 it	automatically	

• destructor

@ Feng HU, 2016 27

Destructor

• The	primary	purpose	is	to	return	an	object’s	
dynamic	memory	to	the	heap,	and	to	do	other	
“cleanup”

• Three	unique	features	of	the	destructor
• The	name	of	the	destructor	is	always	~	followed	by	the	
class	name;

• No	parameters,	no	return	values;
• Activated	automatically	whenever	an	object	becomes	
inaccessible

Question:	when	this	happens?

bag::~bag()
{

delete [] data;
}

@ Feng HU, 2016 28

Destructor

• Some	common	situations	causing	automatic	
destructor	activation
• Upon	function	return,	objects	as	local	variables	
destroyed;

• Upon	function	return,	objects	as	value	parameters	
destroyed;

• when	an	object	is	explicitly	deleted
Question:	shall	we	put	destructor	in	how-to-use-a-
bag	documentation?

bag::~bag()
{

delete [] data;
}

@ Feng HU, 2016 29

The	Law	of	the	Big	Three

•Using	dynamic	memory	requires	the	following	three	
things	all	together
• a	destructor
• a	copy	constructor	(and	of	course	an	ordinary	one)
• an	overloaded	assignment	operator

• In	other	words,	the	three	functions	come	in	a	set	–
either	you	need	to	write	all	three	yourself,	or	you	
can	rely	on	the	compiler-supplied	automatic	
versions	of	all	the	three.

@ Feng HU, 2016 30

What	will	happen	if	not?
If	we	only	have	a	constructor	and	a	destructor,	but	do	not	provide	a	

copy	constructor	and	an	overloaded	assignment	operator		

@ Feng HU, 2016 31

Importance	of	the	Law	of	Big-3

bag *x, *y;
x = new bag(4);
y = new bag(5);
x->insert(18);
x->insert(19);
*y = *x;
delete x;
y->insert(20);

Question: What will happen after executing lines 1 – 8?

// destructor
bag::~bag()
{

delete [] data;
}

// constructor
bag::bag(size_type init_cap)
{

data = new value_type[init_cap];
capacity = init_cap;
used = 0;

}

@ Feng HU, 2016 32

Importance	of	the	Law	of	Big-3

*x
bag *x, *y;
x = new bag(4);
y = new bag(5);
x->insert(18);
x->insert(19);
*y = *x;
delete x;
y->insert(20);

4 0 984

capacity used data

*y 5 0 964

? ? ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

allocate memory for objects (*x, *y)
and their dynamic arrays

// From implementation file bag2.cxx
bag::bag(size_type init_cap)
{

data = new value_type[init_cap];
capacity = init_cap;
used = 0;

}

@ Feng HU, 2016 33

Importance	of	the	Law	of	Big-3

bag *x, *y;
x = new bag(4);
y = new bag(5);
x->insert(18);
x->insert(19);
*y = *x;
delete x;
y->insert(20);

4 2 984

capacity used data

5 0 964

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

Insert two items in the dynamic array of object *x

*x

*y

@ Feng HU, 2016 34

Importance	of	the	Law	of	Big-3

4 2 984

capacity used data

4 2 984

18 19 ? ?

? ? ? ? ?

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

automatic assignment only copies three variables
(capacity, used and data) from *x to *y

lost memory

bag *x, *y;
x = new bag(4);
y = new bag(5);
x->insert(18);
x->insert(19);
*y = *x;
delete x;
y->insert(20);

*x

*y

@ Feng HU, 2016 35

Importance	of	the	Law	of	Big-3

4 2 984 ? ? ? ? ?

[0] [1] [2] [3] [4]

Deleting x will also delete the dynamic
array of *x by calling the destructor

dangling pointer

lost memory

bag *x, *y;
x = new bag(4);
y = new bag(5);
x->insert(18);
x->insert(19);
*y = *x;
delete x;
y->insert(20);

bag::~bag()
{

delete [] data;
}

*y

@ Feng HU, 2016 36

Importance	of	the	Law	of	Big-3

*y 4 2 984 ? ? ? ? ?

[0] [1] [2] [3] [4]

Your program crashes: *y needs its own copy of data !!!

dangling pointer

lost memory

bag *x, *y;
x = new bag(4);
y = new bag(5);
x->insert(18);
x->insert(19);
*y = *x;
delete x;
y->insert(20);

@ Feng HU, 2016 37

Reading	and	Programming	Assignments

• Putting	pieces	together
• bag2.h,	bag2.cxx	both	in	textbook	and	online

• Self-test	exercises
• 16	- 23

•After-class	reading	(string)
• Section	4.5,	Self-Test	26- 32	(within	exam	scope)

•Programming	Assignment	2	Due	Sept	28	(Wed)!
•Assignment	3	is	online	,	due	Oct	12	(Wed)
•Next	Class:		Exam	review	
• Sep	28	Wednesday:	First	Exam	4:00	– 5:30	pm

