
@ Feng HU, 2016 1

CSC212
Data Structure

- Section FG

Lectures	6/7
Pointers	and	Dynamic	Arrays

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

@ Feng HU, 2016 2

Why	Pointers	and	Dynamic	Memory

• Limitation	of	our	bag	class
• bag::CAPACITY	constant	determines	the	capacity	of	every	
bag

• wasteful	(if	too	big)	and	hard	to	reuse	(if	too	small)
• need	to	change	source	code	and	recompile

• Solution:	
• provide	control	over	size	in	running	time
• <=	dynamic	arrays
• <=	pointers	and	dynamic	memory

@ Feng HU, 2016 3

Outline	(Reading	Ch	4.1	– 4.2)

• Pointers
• *(asterisk)	and	&(ampersand)	operators

• Dynamic	Variables	and	new Operator
• Dynamic	Arrays	and	Dynamic	Objects
• Stack	(local)	vs.	heap	(dynamic)	memory

• Garbage	Collection	and	deleteOperator
• Parameters	revisited

• Pointers	and	Arrays	as	Parameters

@ Feng HU, 2016 4

Pointer	Variable

• First	let’s	have	a	look	at	local	variables

•Q:	What’s	the	value	of	i?		

?900

904

908

912

916
…

int i; i

By this declaration, a cell of
4 adjacent bytes (in some
machines) are allocated in
the local memory (called
stack memory) Address 9## is just for

illustration.
Real address may have
64 bits

@ Feng HU, 2016 5

Pointer	Variable	

• First	let’s	have	a	look	at	local	variables

•Q:	How	to	get	the	address?	

42900

904

908

912

916
…

int i;
i = 42;

i

The assignment put number
42 in the cell. The memory
address of the 1st byte is the
address of the variable i

– the pointer to i

@ Feng HU, 2016 6

Pointer	Variable	

• First	let’s	have	a	look	at	local	variables

•Q:	Where	can	we	store	&i?	

42900

904

908

912

916
…

int i;
i = 42;
cout << &i;

i

& (ampersand) operator
- “address of ” operator
- &i is 900 !

-Note: two meanings of &

@ Feng HU, 2016 7

Pointer	Variable	

• The	memory	address	can	be	stored	a	special	pointer	
variable

•Q:	How	to	point	i_ptr	to	i?

42

?

900

904

908

912

916
…

int i=42;
int *i_ptr;

i

i_ptr

1. the type of the data that
the pointer points to: int

2. an asterisk (*)
3. the name of the newly

declared pointer: i_ptr

@ Feng HU, 2016 8

Pointer	Variable	

• Assign	the	address	of	i	to	i_ptr

42

?

900

904

908

912

916
…

int i=42;
int *i_ptr;
i_ptr = &i;

i

i_ptr

What are the results of
- cout << i;
- cout << i_ptr;
- cout << &i_ptr;

@ Feng HU, 2016 9

Pointer	Variable	

• The	i_ptr	holds	the	address	of	an	integer,	not	the	integer	itself

42

900

900

904

908

912

916
…

int i=42;
int *i_ptr;
i_ptr = &i;

i

i_ptr

Two ways to refer to i
- cout << i;
- cout << *i_ptr;
- dereferencing operator *
- two meanings of *

@ Feng HU, 2016 10

Operators	*	and	&

• Operator	*
• Pointer	declaration

int *i_ptr;
• dereferencing	operator

cout << *i_ptr;
• Two	different	meanings!

• Operator	&
• Reference	parameter	

void funct(int& i);
• “address	of	”	operator

i_ptr = &i;
• Just	coincidence?

• Will	see	in	parameter	passing

@ Feng HU, 2016 11

Syntax	and	Naming	Issues

• How	to	declare	two	pointers	in	a	line
char *c1_ptr, *c2_ptr;
• instead	of
char* c1_ptr, c2_ptr;

• For	clarity,	use	_ptr or	cursor for	pointer	variables

@ Feng HU, 2016 12

Assignment	Operators	with	Pointers

• p2	=	p1

int i = 42;
int *p1, *p2;
p1 = &i;
p2 = p1;

42 i900

address value name

? p1904 ? p2908

Both p1 and p2 point to the same integer

900 p1904 900 p2908

42

?

?

900

904

908

912

916
…

i

p1

p2
900

900

@ Feng HU, 2016 13

Assignment	Operators	with	Pointers

• *p2	=	*p1

int i = 42;
int *p1, *p2;
p1 = &i;
*p2 = *p1;

42 i900

address value name

? p1904 ? p2908

p2 doesn’t point to anywhere, so assigning
value to *p2 will cause a running time error!

900 p1904

42

?

?

900

904

908

912

916
…

i

p1

p2
900

X

@ Feng HU, 2016 14

? p1908 900 p1908 ? p2912 904 p2912

Assignment	Operators	with	Pointers

• *p2	=	*p1

int i = 42;
int j = 20;
int *p1, *p2;
p1 = &i;
p2 = &j;
*p2 = *p1;

42 i900

Both i (*p1) and j (*p2) will have the same
integer values

42

20

?

?

900

904

908

912

916
…

i
j

p1

p2

900

90420 j904 42 j904

42

@ Feng HU, 2016 15

Outline	(Reading	Ch	4.1	– 4.2)

• Pointers
• *(asterisk)	and	&(ampersand)	operators

• Dynamic	Variables	and	new Operator
• Dynamic	Arrays	and	Dynamic	Objects
• Stack	(local)	vs.	heap	(dynamic)	memory

• Garbage	Collection	and	deleteOperator
• Parameters	revisited

• Pointers	and	Arrays	as	Parameters

@ Feng HU, 2016 16

Dynamic	Variables

• We	cannot	use	a	pointer	if	not	initialized
• need	to	point	to	a	declared	variable

• How	to	use	a	pointer	without	connecting	with	a	declared	ordinary	
variable?

• Solution:	 Dynamic	(allocated)	variables
• not	declared,	therefore	no	identifier
• created	during	execution	

• Real	power	of	pointers	is	with	dynamic	variables

@ Feng HU, 2016 17

The	new Operator

• allocates	memory	and	return	a	pointer

? p1900int *p1;
p1 = new int;
*p1 = 20;

? ?10500

- p1 points to a dynamic integer variable
without any identifier (name)

- dynamic memory comes from the
programs’ heap (free store)

20 ?10500

?900

904

908

…

…

10492

10496

10500

p1

?

10500

20

@ Feng HU, 2016 18

Dynamic	Arrays

• new	can	allocate	an	entire	array	all	at	once

? p1900int *p1;
p1 = new int[4];
p1[2] = 20;
cout<<*(p1+2);

10488

- p1 points to 1st entry of dynamic array

- number of entries in a pair of sq. brackets

- two ways to access p1 (array or pointer)

?900

904

908

…

…

10488

10492

10496

10500

p1

?

10488

20

20

@ Feng HU, 2016 19

Accessing	Dynamic	Array

• Use	array	notation
• the	1st entry
p1[0]	=	18;

• the	3rd entry
p1[2]	=	20;

• the	ith	entry
p1[i-1]	=	19;

• Use	pointer	notation
• the	1st entry
*p1	=	18;

• the	3rd entry
*(p1+2)	=	20;

• the	ith	entry
*(p1+i-1)	=	19;

A demo for pointers and dynamic arrays:
test_pointer.cxx

@ Feng HU, 2016 20

Dynamic	Array	Example:Quiz

• A	program	read	ages	of	each	of	
CCNY	classes,	with	varying	sizes,	
calculate	the	average,	and	then	
print	out	the	average.

size_t size;
int *ages;
float average;

cin >> size;
ages = new int[size];

// input ages of all students
// calculate average
// print average
…

@ Feng HU, 2016 21

Dynamic	Objects	of	a	class

• new	can	also	allocate	a	dynamic	object

? p1900point *p1;
p1 = new point(1.0, 2.0);
cout<< (*p1).get_x();
cout<< p1->get_x();

- p1 points to dynamic object without name

- parameters can be used as in declaration

- two ways to access p1 (* and ->)

?900

904

908

…

…

10488

10492

10496

10500

p1

?

10496

1.0

2.0

10496 1.0 2.0

@ Feng HU, 2016 22

Dynamic	Object	Arrays	of	a	class

Q:	Are	the	followings	correct?			point3	demo
• Ten	points	with	default	coordinates?

p1 = new point[10];
• Ten	points	with	the	same	coordinates?	

p1 = new point(1.0, 2.0)[10];
• Ten	points	on	the	x	axis	with	interval	1?

p1 = new point[10];
for (i=0; i<10; i++) p1[i].set(i, 0);

Assume	we	have	a	member	function
void	point::set(double	x_init,	double	y_init);

V

X

V

@ Feng HU, 2016 23

Failure	of	the	new Operator

•Dynamic	memory	via	new	operator	comes	from	
heap	of	a	program

•Heap	size	from	several	K	to	1GB,	however	fixed
•Could	run	out	of	room	therefore	cause	a	bad_alloc
exception	
• error	message	and	program	halts

•Good	practice	1:	document	which	functions	uses	
new

•Good	practice	2:	garbage	collection	by	delete
operator

@ Feng HU, 2016 24

Outline	(Reading	Ch	4.1	– 4.2)

• Pointers
• *(asterisk)	and	&(ampersand)	operators

• Dynamic	Variables	and	new Operator
• Dynamic	Arrays	and	Dynamic	Objects
• Stack	(local)	vs.	heap	(dynamic)	memory

• Garbage	Collection	and	deleteOperator
• Parameters	revisited

• Pointers	and	Arrays	as	Parameters

@ Feng HU, 2016 25

The	delete Operator

• Release	any	dynamic	memory	(heap	memory)	that	is	no	longer	
needed

int *i_ptr;
double *d_ptr;
point *p_ptr;

i_ptr = new int;
d_ptr = new double[20];
p_ptr = new point(1.0, 2.0);
… …

…
delete i_ptr;
delete [] d_ptr; // empty brackets
delete p_ptr;

Questions(true or false):
1. delete resets these pointers
2. delete removes dynamic

objects pointed by the pointers
3. nothing happens to the

pointers themselves

X

V

V

@ Feng HU, 2016 26

Outline	(Reading	Ch	4.1	– 4.2)

• Pointers
• *(asterisk)	and	&(ampersand)	operators

• Dynamic	Variables	and	new Operator
• Dynamic	Arrays	and	Dynamic	Objects
• Stack	(local)	vs.	heap	(dynamic)	memory

• Garbage	Collection	and	deleteOperator
• Parameters	revisited

• Pointers	and	Arrays	as	Parameters

@ Feng HU, 2016 27

Pointers	and	Arrays	as	Parameters

• Value parameters	that	are	pointers
• Array parameters
• Pointers	and	arrays	as	const parameters
• Reference parameters	that	are	pointers

@ Feng HU, 2016 28

Value	parameters	that	are	pointers

• Compare	ordinary	and	pointer	variables

void print_int_42(int i)
{

cout << i<<endl ;
i = 42 ;
cout << i <<endl;

}

void set_int_42(int* i_ptr)
{

cout << *i_ptr <<endl;
*i_ptr = 42 ;
cout << *i_ptr <<endl;

}

Calling program:
int m = 80;
print_int_42(m); cout << m<<endl<<endl;
set_int_42(&m); cout << m<<endl<<endl;

80
42
80

80
42
42

@ Feng HU, 2016 29

Array	Parameters

• Compare	ordinary	and	Dynamic	arrays

Calling program:

int ages[30];

make_all_20(ages, 30);

void make_all_20(int data[], size_t size)
{

for (int i = 0 ; i< size; i++)
{

data[i] = 20;
}

}

- An array parameter automatically treated as
pointer to the first entry (– value or reference?)
- In the function prototype and implementation, size
of the array is not specified inside bracket but by
another parameter

Calling program:

int *ages;
ages = new int[30]
make_all_20(ages, 30);

@ Feng HU, 2016 30

Pointers	or	Array	as	const	Parameters

• to	make	sure	they	will	not	be	changed

Calling program:
int *ages, *i_ptr;
double aver_age;
ages = new int [30];
...
aver_age = average(ages, 30);
i_ptr = &ages[12]; // i_ptr = (ages+12);
if (is_20(i_ptr)) cout <<“Sudent No. 13 is 20!”<<endl;

Protoptyes:
bool is_20(const int* i_ptr);
double average(const int data[], size_t size);

@ Feng HU, 2016 31

Reference	Parameters	that	are	Pointers

• if	we	want	to	change	the	pointer	to	a	new	location

Calling program:
int *ages;
int jone = 20; // assume &jone is 904 now
ages = &jone;
cout << “address that ages points to is ”<< ages<<endl;
allocate_int_array(ages, 30);
cout << “address that ages points to is ”<< ages<<endl;

void allocate_int_arrary(int* i_ptr, size_t size)
{

i_ptr = new int[size];
}

X

@ Feng HU, 2016 32

Reference	Parameters	that	are	Pointers

• if	we	want	to	change	the	pointer	to	a	new	location

Calling program:
int *ages;
int jone = 20; // assume &jone is 904 now
ages = &jone;
cout << “address that ages points to is ”<< ages<<endl;
allocate_int_array(ages, 30);
cout << “address that ages points to is ”<< ages<<endl;

void allocate_int_arrary(int*& i_ptr, size_t size)
{

i_ptr = new int[size];
}

V

@ Feng HU, 2016 33

Reference	Parameters	that	are	Pointers

• if	we	want	to	change	the	pointer	to	a	new	location

Calling program:
int *ages;
int jone = 20; // assume &jone is 904 now
ages = &jone;
cout << “address that ages points to is ”<< ages<<endl;
allocate_int_array(ages, 30);
cout << “address that ages points to is ”<< ages<<endl;

typedef int* integer_ptr;
void allocate_int_arrary(integer_ptr& i_ptr, size_t size)
{

i_ptr = new int[size];
}

V

@ Feng HU, 2016 34

Reading	and	Programming	Assignments

• Reading	before	the	next	lecture
• Chapter	4.	Sections	4.3-4.4

• Programming	Assignment	2
• Detailed	guidelines	 online!
• Due	September	28	(Wednesday)

