7% COMPUTER SCIENCE
* 0 Crry CoLLeGE oF NEw YORK

CSC212 |
Data Structure
- Section FG

Lectures 6/7
Pointers and Dynamic Arrays

Instructor: Feng HU
Department of Computer Science

City College of New York

@ Feng HU, 2016 1

Why Pointers and Dynamic Memory

* Limitation of our bag class

* bag::CAPACITY constant determines the capacity of every
bag

» wasteful (if too big) and hard to reuse (if too small)
* need to change source code and recompile
e Solution:
e provide control over size inrunning time
e <= dynamic arrays
e <= pointersand dynamic memory

@ FengHU, 2016

Outline (Reading Ch 4.1 —4.2)

Pointers
» *(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator
* Dynamic Arrays and Dynamic Objects
» Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited
* Pointers and Arrays as Parameters

@ FengHU, 2016

Pointer Variable

* First let’s have a look at local variables

int i;

x\t\f

By this declaration, a cell of

4 adjacent bytes (in some

machines) are allocated in

the local memory (called —

stack memory) Address 9## is |

o - ’ : just for
Q: What’s the value of i? Bk sadradinn

Real address may have
64 bits

o
f—
no

o
()
=)

@ FengHU, 2016

Pointer Variable

* First let’s have a look at local variables

Int I;

i = 42;
The assignment put number
42 in the cell. The memory
address of the 1st byte is the
address of the variable i

— the pointer to |
*Q: How to get the address?

@ FengHU, 2016

42

Pointer Variable

* First let’s have a look at local variables

Int I

i = 42;

cout << &i;
& (ampersand) operator
- “address of " operator
- &iis 900!

-Note: two meanings of &
* Q: Where can we store &i?

@ FengHU, 2016

42

Pointer Variable

* The memory address can be stored a special pointer

variable
9200 42 i
904 L i ptr
int *i_ptr; —
1. the type of the data that 912
the pointer points to: int 916

2. an asterisk (*)
3. the name of the newly -
declared pointer: i _ptr -

*Q: How to pointi_ptrtoi? —

@ FengHU, 2016

Pointer Variable

* Assign the address of i toi_ptr

|_ptr = &i;

What are the results of
- cout <<j;

- cout << | _ptr;

- cout << &i _ptr;

@ FengHU, 2016

42

912
916

i ptr

Pointer Variable

* The i_ptr holds the address of an integer, not the integer itself

int *i_ptr;
|_ptr = &i;

Two ways to refer to i

- cout <<j;

- cout << ¥ _ptr,;

- dereferencing operator *
- two meanings of *

@ FengHU, 2016

42

§\§§

o
p—
[\®)

\o
.
=)

i ptr

Operators * and &

e Operator * * Operator &
* Pointer declaration * Reference parameter
int *i_ptr; void funct(int& i);
» dereferencing operator * “address of ” operator
cout << *i_ptr; |_ptr = &i;
* Two different meanings! * Just coincidence?

* Will see in parameter passing

@ FengHU, 2016 10

Syntax and Naming Issues

* How to declare two pointers in aline
char *c1_ptr, *c2_ptr;
* instead of
char* ¢c1_ptr, c2_ptr;

* Forclarity, use _ptror cursorfor pointer variables

@ FengHU, 2016

11

Assignment Operators with Pointers

904 |] pl
address value name 908 p2
'[_ 912
15
900 4“2 916
904 900 g08 900 p2 ——

Both p1 and p2 point to the same integer

@ Feng HU, 2016 12

Assignment Operators with Pointers

904 |] pl
address value name 908 L p2
) i/ o
900 47 |

x / -

904 900 p1 98 7 p2 ——

p2 doesn’t point to anywhere, so assigning
value to *p2 will cause a running time error!
@ FengHU, 2016 13

Assignment Operators with Pointers

e *p2 =*pl 900 42 i
% | HER
908 pl
900 427 i e04a 472 | 912 p2
¢ 916

908 900 p1 912 904 p2 ——

Both i (*p1) and j (*p2) will have the same
integer values
@ FengHU, 2016

14

Outline (Reading Ch 4.1 —4.2)

Pointers
» *(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator
* Dynamic Arrays and Dynamic Objects
» Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited
* Pointers and Arrays as Parameters

@ FengHU, 2016

15

Dynamic Variables

* We cannot use a pointer if not initialized
* need to point to a declared variable

 How to use a pointer without connecting with a declared ordinary
variable?

* Solution: Dynamic (allocated) variables
* not declared, therefore no identifier
e created during execution

* Real power of pointers is with dynamic variables

@ FengHU, 2016

16

The new Operator

 allocates memory and return a pointer

900 7’ p1

p1 = new int;

.

10500 20 ?

- p1 points to a dynamic integer variable
without any identifier (name)

- dynamic memory comes from the
programs’ heap (free store)

@ FengHU, 2016

LY

10492
10496
10500

17

Dynamic Arrays

* new can allocate an entire array all at once

900 7/ p1 900
_ 904
p1 = new int[4]; —
908
10488 20)
- p1 points to 1st entry of dynamic array 10488
- number of entries in a pair of sq. brackets :xz

- two ways to access p1 (array or pointer) 10500

@ FengHU, 2016

Accessing Dynamic Array

* Use array notation * Use pointer notation
* the Istentry e the Istentry
pl[0] = 18; *pl = 18;
* the 3 entry * the 3" entry
pl[2] = 20; *(p1+2) = 20;
* the ith entry e the ith entry
pl[i-1] = 19; *(pl+i-1) = 19;

A demo for pointers and dynamic arrays:
test pointer.cxx

@ FengHU, 2016

19

Dynamic Array Example:Quiz

* A program read ages of each of
CCNY classes, with varying sizes,
calculate the average, and then
print out the average.

ages = new Int[size];

@ FengHU, 2016 20

Dynamic Objects of a class

* new can also allocate a dynamic object

900 7 p1

p1 = new point(1.0, 2.0);

10496

- p1 points to dynamic object without name
- parameters can be used as in declaration

- two ways to access p1 (* and ->)

@ FengHU, 2016

10488
10492
10496
10500

21

Dynamic Object Arrays of a class

Q: Are the followings correct? point3 demo

* Ten points with default coordinates?
V p1 = new point[10];

* Ten points with the same coordinates?
X p1=new point(1.0, 2.0)[10];

* Ten points on the x axis with interval 17?
p1 = new point[10];
V' for (i=0; i<10; i++) p1[i].set(i, 0):

Assume we have a member function
void point::set(double x_init, double y _init);

@ FengHU, 2016

22

Failure of the new Operator

* Dynamic memory via new operator comes from
heap of a program

* Heap size from several K to 1GB, however fixed

* Could run out of room therefore cause a bad_alloc
exception
* error message and program halts

* Good practice 1: document which functions uses
new

* Good practice 2: garbage collection by delete
operator

@ FengHU, 2016

23

Outline (Reading Ch 4.1 —4.2)

Pointers
» *(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator
* Dynamic Arrays and Dynamic Objects
» Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited
* Pointers and Arrays as Parameters

@ FengHU, 2016

24

The delete Operator

* Release any dynamic memory (heap memory) thatis no longer
needed

@ FengHU, 2016

Outline (Reading Ch 4.1 —4.2)

Pointers
» *(asterisk) and &(ampersand) operators

Dynamic Variables and new Operator
* Dynamic Arrays and Dynamic Objects
» Stack (local) vs. heap (dynamic) memory

Garbage Collection and delete Operator

Parameters revisited
* Pointers and Arrays as Parameters

@ FengHU, 2016

26

Pointers and Arrays as Parameters

Value parameters that are pointers

Array parameters

Pointers and arrays as const parameters

. parameters that are pointers

@ FengHU, 2016

27

Value parameters that are pointers

 Compare ordinary and pointer variables

*I_ptr 30

*i_ptr 49
*i_ptr

80

print_int_42(m);

set_int_ 42(&m);

@ FengHU, 2016

28

Array Parameters

* Compare ordinary and Dynamic arrays

Calling program: void make_all_20(int data[], size_t size)

{
int ages[30]; Eor(lnt i =0; i< size; i++)
make_all 20(ages, 30); } data[l] = 20;

}

An array parameter automatically treated as
pointer to the first entry (—value or reference?)

- In the function prototype and implementation, size
of the array is not specified inside bracket but by
@ Feng HU, 2016 another parameter

Pointers or Array as const Parameters

* to make sure they will not be changed

const
const

Calling program:

int *fages, *i_ptr;
double aver_age;
ages = new int [30 |;

aver_age = average(ages, 30);

i_ptr = &ages[12]; //i_ptr = (ages+12);
if (is_20(i_ptr)) cout <<“*Sudent No. 13 is 20!"<<end];

@ FengHU, 2016

30

Reference Parameters that are Pointers

*if we want to change the pointer to a new location

int*

X

Calling program:

int *ages;

int jone = 20; //assume &jone is 904 now

ages = &jone;

cout << “address that ages points to is "<< ages<<end|;
allocate int_array(ages, 30);

cout << “address that ages points to is "<< ages<<end|;

@ FengHU, 2016 31

Reference Parameters that are Pointers

*if we want to change the pointer to a new location

int*&
Vv

Calling program:

int *ages;

int jone = 20; // assume &jone is 904 now

ages = &jone;

cout << “address that ages points to is "<< ages<<end];
allocate int_array(ages, 30);

cout << “address that ages points to is "<< ages<<end];

@ Feng HU, 2016 32

Reference Parameters that are Pointers

*if we want to change the pointer to a new location

typedef int* integer_ptr;
integer_ptr&

Calling program:

int *ages;

int jone = 20; // assume &jone is 904 now

ages = &jone;

cout << “address that ages points to is "<< ages<<end];
allocate int_array(ages, 30);

cout << “address that ages points to is "<< ages<<end];

@ Feng HU, 2016 33

Reading and Programming Assignments

* Reading before the next lecture
e Chapter 4. Sections 4.3-4.4

* Programming Assignment 2
e Detailed guidelines online!
* Due September 28 (Wednesday)

@ FengHU, 2016

34

