7. % COMPUTER SCIENCE

1 Crry CoLLEGE oF NEw YORK

CSC212
Data Structure
- Section FG

Lecture 2
ADT and C++ Classes (I)

Instructor: Feng HU
Department of Computer Science

City College of New York

Feng HU 2016 1

Outline

A Review of C++ Classes (Lecture 2)

e OOP, ADTs and Classes

* Class Definition, Implementation and Use
* Constructors and Value Semantics

More on Classes (Lecture 3)

* Namespace and Documentation

* Classes and Parameters

* Operator Overloading

Feng HU 2016

ject Oriented Programming

* Chapter 2 introduces Object Oriented Programming.

* OOP is the typical approach to programming which
supports the creation of new data types and operations
to manipulate those types.

* This lecture gives a review of C++ Classes and
introduces ADTs.

Feng HU 2016

C++ Classes and ADTs

* Class
* Mechanism to create objects and member functions
» Support information hiding

» Abstract Date Types (ADTs)
* mathematical data type

e Class asan ADT that programmers can use without knowing how the
member functions are implemented - i.e. with information hiding

Feng HU 2016

A point ADT

e A data type to store and
manipulate a single point on a
plane

: : 2
* Manipulations

* |nitialize

e Retrieval
0

* Shift

-1
-2

Feng HU 2016

A point ADT

e A data type to store and
manipulate a single point on a

plane P y ___________
* Manipulations |
« Initialize 1 :r----z:)pl- ------------ :
* Retrieval coordinates 0 | |
* Shift 5
(-1, 0.8) A
-2

Feng HU 2016

A point ADT

e A data type to store and
manipulate a single point on a

plane g o Y+
* Manipulations o
* Initialize < 1 rop1 ------ = r
08 4 | '
* Shift
A
-2 |
2 11 0 1 2
v
-1.0

Feng HU 2016

A point ADT

e A data type to store and
manipulate a single point on a
plane

* Manipulations
e |nitialize
e Retrieval coordinates

(1.3, -1.4)

Feng HU 2016

y 4
A T
R
0 | §
A b S i
' pZ
2R R .

Outline

A Review of C++ Classes (Lecture 2)

e OOP, ADTs and Classes

* Class Definition, Implementation and Use
* Constructors and Value Semantics

More on Classes (Lecture 3)

* Namespace and Documentation

* Classes and Parameters

* Operator Overloading

Feng HU 2016

point Definition

N O =2 N

* We can implement the point
object using a data type called a PSPPI point

{

class.

Don't forget the

semicolon at ine end
Feng HU 2016

point Definition

N O =2 N

* The class will have two
components called x andy.
These components are the x and
y coordinates of this point.

class point

{

* Using a class permits two new

features . . . double Xx;

doubley;

Feng HU 2016

point Definition

1)

Feng HU 2016

The two components will be
private member variables.
This ensures that nobody can
directly access this
information. The only access
is through functions that we
provide for the class.

class point

{

private:

};

double x;
doubley;

N O =2 N

point Definition

A In aclass, the functions which
manipulate the class are also

class point

listed. ¢
public:
private:
double Xx;
doubleYy;
Prototypes for the poin E
functions go here,
after the word public:

Feng HU 2016

N s O =

point Definition

A In aclass, the functions which
manipulate the class are also class point

listed. {
public:
private:
double x;

doubley;

Prototypes for the poiA F

member functions go
here

Feng HU 2016

N O =2 N

point Definition

Our point has at least four member functions:

class point
{
public:
void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;
private:
double x;
doubley;

point Definition

2 -1 0 1 2

The keyword const appears after two prototypes:

class point

{

public:
void initialize(double init_x, doubles);
void shift(double dx, double dx
double get x() const; functions will nog .
double get_y() const; the data storeg l?n f;nge

private: point ADT,
double x;

doubley;

Feng };

This means that these

Files for the point ADT

have just seen, is placed with
documentationin a file called

point.h, outlined here.

* The implementations of the
four member functions will be
placed in a separate file called
point.cxx, which we will examine in
a few minutes.

Feng HU 2016

N O =2 N
x

Documentation:
(Preconditions and
Postconditions)

Class definition:

*point class
definition which we
have already seen

I

N

Outline

A Review of C++ Classes (Lecture 2)

e OOP, ADTs and Classes

* Class , Implementation and Use
* Constructors and Value Semantics

More on Classes (Lecture 3)

* Namespace and Documentation

* Classes and Parameters

* Operator Overloading

Feng HU 2016

18

Using the point ADT

e A program that wants _ _
to use the point ADT #include <iostream.h>

must include the #include <stdlib.h>

point.h header file #include “point.h™
(along with its other
header inclusions).

 File pointmainl.cxx

Feng HU 2016

II\JL\O_\I\)

Using the point ADT

II\JL\O_\N
>

e Just for illustration, the

example program will #include <iostream.h>
declare two point #include <stdlib.h>
variables named p1 and [EEGLICULCRE Tl

p2.

int main()

{

point p1;
point p2;

Feng HU 2016

Using the point ADT

e Just for illustration, the
example program will

declare two point objects
named pl and p2.

Feng HU 2016

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()

{
point p1;
point p2;

N O =2 N

ll\JL\O_\I\)
>

Using the point ADT

* The program starts by _ _
callingthe initialize #include <iostream.h>

member function for #include <stdlib.h>
pl. #include “point.h"

int main()

{
point p1;

point p2;
p1.initialize(-1.0,0.8);

Feng HU 2016

ll\JL\O_\I\)
>

Using the point ADT

* The program starts by _ _
activating the #include <iostream.h>

initialize member #include <stdlib.h>
function for p1. #include “point.h"

int main()

{
point p1:
point p2;

p1.initialize(-1.0, 0.8);

Feng HU 2016

R R
o T
Using the point ADT g O

@The member function
activation consists of
four parts, starting with
the object name. int main()

{
point p1;
point p2;

p1.initialize(-1.0, 0.8);

Feng HU 2016

R R
o T
Using the point ADT g O

@AThe instance (object)
name is followed by a

period.
int main()

{
point p1;
point p2;

p1.initialize(-1.0, 0.8);

Feng HU 2016

N O =2 N
x

Using the point ADT

OAfter the period is the
name of the member
function that you are
activating. int main() {

point p1;
point p2;

p1.initialize(-1.0, 0.8);

Feng HU 2016

R R
o T
Using the point ADT g O

OFinally, the arguments
for the member
function. In this

example the first int main() {

argument (x coordinate) point p1;

and the second point p2;

argument (y NP

coordinate) p1.initialize(-1.0, 0.8);

Feng HU 2016

A Quiz

How would you
activate p1’'s get x
member function ?

int main()
{
What would be the [SONS
output of p1's point p%;

get x member p1.initialize(-1.0, 0.8);
function at this
pointin the
program ?

Feng HU 2016

R R
A Quiz S IR

Notice that the get_X
member function has no

arguments.
& int main() {
point p1;
At this point, activating point p2;

p1.get_ X will return a
double value

-1.0. cout << p1.get_x() <<endl,

p1.initialize(-1.0, 0.8);

Feng HU 2016

A Quiz

N O =2 N

int main() Trace through this

{ program, and tell
point p1; me the complete
point p2; output.

p1.initialize(-1.0, 0.8);
cout << p1l.get x() << p1l.get y() <<endl;

p2.initialize(p1.get_x(), p1.get_y());
cout << p2.get x() << p2.get_y() <<endl;
p2.shift(1.3, -1.4);

cout << p2.get x() << p2.get_y() <<endl;

30

A Quiz

int main()

{
point p1;
point p2;

p1.initialize(-1.0, 0.8);
cout << p1l.get x() << p1l.get y() <<endl;

p2.initialize(p1.get_x(), p1.get_y());
cout << p2.get x() << p2.get_y() <<endl;
p2.shift(1.3, -1.4);

cout << p2.get x() << p2.get_y() <<endl;

Feng HU 2016

N O =2 N

-1.0 0.8
-1.0 0.8
0.3 -0.6

31

What you know about Objects

v Class = Data + Member Functions.

v You know how to a new class type, and place
the definition in a header file.

v You know how to the header file in a program
which declares instances of the class type.

v You know how to member functions.

% But you still need to learn how to write the bodies of
a class’s member functions.

Feng HU 2016 32

Outline

A Review of C++ Classes (Lecture 2)

e OOP, ADTs and Classes

* Class , Implementation and
* Constructors and Value Semantics
More on Classes (Lecture 3)

* Namespace and Documentation

* Classes and Parameters

* Operator Overloading

Feng HU 2016

33

point Implementation

Remember that the member function’s bodies
generally appear 1n a separate point.cxx file.
class point

{
public:
void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;
private:
double x;
doubley;

point Implementation

2 -1 0 1 2

We will look at the body of intialize, which must assign

its two arguments to the two private member variables.
class point

{
public:

void shift(double dx, double dy);
double get_x() const;
double get_y() const;
private:
double x;
doubley;

Feng };

point Implementation

N O =2 N
1
>

For the most part, the function’s body is no different
than any other function body.

void point::initialize(double init_x, double init_y)

{

X = Init_Xx;
y =init_y;

}

But there are two special features about a
member function’s body . ..

Feng HU 2016 36

g -1 ¥
1 ; 'é‘p"""l_"'l

. . 0 . I X
point Implementation AT

OIn the heading, the function'sname s preceded by the class name
and :: - otherwise C++ won'trealize this is a class’s member function.

void point::initialize(double init_x, double init_y)

{

X = init_x;

y = init_y;

Feng HU 2016 37

point Implementation

N O =

AWithin the body of the function, the class’s member variables
and other member functions may all be accessed.

void point::initialize(double init_x, double init_y)
{

= init_x;

= init_y;

Feng HU 2016 38

point Implementation

N Ao a2 N
1

AWithin the body of the function, the class’s member variables
and other member functions may all be accessed.

But, whose member

T . .| variables are
initialize(double init

these? Are they

= jnit_x; p1.x
= init_y; ply
p2.x
p2.y

Feng HU 2016

point Implementation

N Ao a2 N
1

AWithin the body of the function, the class’s member variables
and other member functions may all be accessed.

If we activate
pl.initialize:
p1.x

initialize(double init

= init_Xx; ply
= init_y;

Feng HU 2016

point Implementation

N Ao a2 N
1

AWithin the body of the function, the class’s member variables
and other member functions may all be accessed.

If we activate
p2.initialize:
p2.x

initialize(double init

= init_Xx; p2.y
= init_y;

Feng HU 2016

g -1 ¥
1 1 -q',p-- --------

. . 0 . I X
point Implementation AT

Here is the implementation of the get x member
function, which return the x coordinate:

double point::get_x()
{

return Xx;

Feng HU 2016 42

point Implementation

N O =2 N
1
>

Here is the implementation of the get x member
function, which return the x coordinate:

double point::get_x() const

{

return Xx;

Notice how this member function implementation
uses the member variable x of the point object.

Feng HU 2016 43

point Implementation

N O =2 N
1
>

Member functions may activate other member
functions

void point::origin()

{

x =0.0;
y = 0.0;
}

Notice this member function implementation still
directly assign the member variables x and .

Feng HU 2016 44

g -1 ¥
1 1 -q';p-- --------

. . 0 . I X
point Implementation AT

Member functions may activate other member
functions

void point::origin()
{
initialize(0.0, 0.0);

Notice how this member function implementation
uses the member function iitialize.

Feng HU 2016 45

A Common Pattern

e Often, one or more member functions will
place data in the member variables...

class point

{

public:
void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;

double get_y() const;

private:
Initialize & shift get x & get y

M ...so that other member functions may use that
data.

Feng HU 2016 46

Ummary of classes

e Classes have member variables and member
functions. An object is a variable where the data type
is a class.

* You should know how to declare a new class type,
how to implement its member functions, how to use
the class type.

* Frequently, the member functions of an class type
place information in the member variables, or use
information that's already in the member variables.

* Next we will see more features of OOP and classes.

Feng HU 2016 47

Assignments

* Reading:
* Chapter 2.3-2.5

* Programming assignment 1 - Due Wed, Sep. 16

* Need all of chapter 2 to finish, but you can start doingiit
now

* Requirements and guidelines have been posted on the
course web site

e C++ Installation Guide online

* Linux Users: See the assignment #1 guidelines
* Mac/Win Users: Check the course bulletin (by Wai Khoo)

Feng HU 2016 48

Feng HU 2016

Break

49

Outline

A Review of C++ Classes (Lecture 2)

e OOP, ADTs and Classes

* Class Definition, Implementation and Use
* Constructors and Value Semantics

More on Classes (Lecture 3)

* Namespace and Documentation

* Classes and Parameters

* Operator Overloading

Feng HU 2016

50

Constructors: point Initialization

N O =2 N

* The program starts by _]
#include <iostream.h>

activating the : :
initialize member #include <stdlib.h>
function for p1. #include “point.h"

int main()

{
point p1:
point p2;

p1.initialize(-1.0, 0.8);

~Irst iImprovementi: automatic iniialzaton
without activating the inlialize function

Feng HU 2016 ol

Constructors: point Initialization

2 -1 0 1 2

We can provide a normal member function initialize

class point
{
public:
void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get y() const;
private:
double x;
doubley;

Constructors: point Initialization

class point

{
public:

point(doubleinit_x, double init_y);

doubic™gst_y() const;
private:

double x; -function name same as

doubley;

N O =

>S Narme

- NO returm type, even no "void !

Constructors: Implementation

N O =
1

For the most part, the constructor 1s no different
than any other member functions.

void point:: (double init_x, double init_y)
{

X = Init_Xx;

y = init_y;

}

We only need to replace initialize with point

Feng HU 2016 54

Constructors: Implementation

For the most part, the constructor 1s no different
than any other member functions.

point:: (double init_x, double init_y)

{

X = Init_Xx;
y =init_y;

}

But there are three special features about constructor.

Feng HU 2016 55

Constructors

e Constructor is a member function which
* the name must be the same asthe class name
* automatically called whenever a variable of the class is declared

e arguments must be given after the variable name (when declared in user
file)

* A way to improve the initialize function
e by providing an initialization function that is guaranteed to be called

Feng HU 2016

56

Constructors: point Initialization

N O =2 N

e Automatically called

when declared. #include <iostream.h>

#include <stdlib.h>

 Parameters after the #include “point.h"

object names

int main()

{
point p1:
point p2;

p1.initialize(-1.0, 0.8);

~Irst iImprovementi: automatc inltialzaton
without @xplicitly activating an inltialize

Feng H TUNCLION

N O =2 N

Constructors: point Initialization

e Automatically called

when declared. #include <iostream.h>

#include <stdlib.h>

 Parameters after the #include “point.h"

object names

int main()

{
point p1(-1.0, 0.8):
point p2(0.3, 0.6);

~Irst iImprovementi: automatc inltialzaton
without @xplicitly activating an inltialize

Feng H TUNCLION

e BT
1
1
©
1
1
1
NNV [| —
1
1
1
=

Default Constructors

N O =2 N

e Automatically called

when declared. #include <iostream.h>

#include <stdlib.h>

 Parameters after the #include “point.h"

object names

int main()

{
point p1(-1.0, 0.8):
point p2(0.3, 0.6);

Sometime we want o define an ooject witn

NoO orlrrlrrlrﬂle ;S

Feng HU 2016 oY

AT e B
S
Default Constructors A

* Automatically called _ _
when declared. #include <iostream.h>

#include <stdlib.h>
#include “point.h"

* NO parameters after
the object name p2

int main()

{
point p1(-1.0, 0.8);
point p2;

not even a pair oi parenineses

Feng HU 2016 ou

Default Constructors

2 -1 0 1 2

We could provide a second constructor with no parameters

class point
{ Implementation

public: e
boint(): ?omt.. ()
point(doubleinit_x, double init_y) x = 0.0

y =0.0;

private:)
double x;
doubley;

};

Constructors: Function Overloading

* You may declare as many constructors as you like — one for each
different way of initializing an object

e Each constructor must have a distinct parameter list so that the
compiler can tell them part

e Question: How many default constructor is allowed?

Feng HU 2016

62

Constructors: automatic default constructor

* What happens if you write a class without any
constructors?

* The compiler automatically creates a simple default
constructor

* which only calls the default constructors for the member
variables that are objects of some other classes

* Programming Tip :Always provide your own
constructors, and better with a default constructor

Feng HU 2016 63

Value Semantics of a Class

* Value semantics determines how values are copied
from one object to another

* Consists of two operations in C++
* The assignment operator
* The copy constructor

* Document the value semantics

* When you implement an ADT, the document should
includea comment indicating that the value semantics is
safe to use.

Feng HU 2016

64

Value Semantics: assignment operator

* Automatic assignment operator

* Fora new class, C++ normally carries out assignment by
simply copying each variable from the object on the right
to that on the left

e our new class point can use automatic assignment
operator

* When automatic assignment tails

* we will see examples in Lecture 4 (pointers and dynamic
arrays)

Feng HU 2016

65

Value Semantics: copy constructor

* A copy constructor

* is a constructor with exactly one parameter whose data type is the same as
the constructor’s class

e isto initialize a new object as an exact copy of an existing object

* An example

Feng HU 2016

66

Value Semantics: copy constructor

* A copy constructor

* is a constructor with exactly one parameter whose data type is the same as
the constructor’s class

e isto initialize a new object as an exact copy of an existing object

* An alternative syntax

Feng HU 2016

67

Value Semantics: discussion

* point p2 = p1; versus
The assignment merely copies pl to the already
existing object p2 using the :
e The syntax point p2 = p1; looks like an assighnment
statement, but actually a declaration that both declare a

new object, and calls the to initialize p2
as a copy of p1.

Feng HU 2016 68

Copy Constructor: Implementation

* You may write a copy constructor much like any
other constructor

* Lecture 4 and later D>

* Take advantage of a C++ feature _

* similar to assignment, the automatic copy constructor
initializes a new object by merely copy all the member
variables from the existing object.

e Automatic versions may fail!

Feng HU 2016 69

Constructors, etc.—a summa ry

e Constructoris a member function
» define your own constructors (including a default)
e automatic default constructor

e value semantics of a class
e assignment operators and copy constructor
e automatic assignment op and copy constructor

Feng HU 2016

70

Outline

A Review of C++ Classes (Lecture 2)

e OOP, ADTs and Classes

* Class Definition, Implementation and Use
* Constructors and Value Semantics

More on Classes (Lecture 3)

* Namespace and Documentation

* Classes and Parameters

* Operator Overloading

Feng HU 2016

71

Assignments

* Reading:
* Chapter 2.3-2.5

* Programming assignment 1 - Due Sep. 14
* Need all of chapter 2 to finish, but you can start doing it now
* Requirements and guidelines will be posted on the course web site

Feng HU 2016

72

The first part (p.3-47) of this lecture was adapted from:

Presentation copyright 1997, Addison Wesley Longman
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force

(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club

Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).
Students and instructors who use Data Structures and Other Objects Using C++ are

welcome to use this presentation however they see fit, so long as this copyright notice
remains intact.

THE END

Feng HU 2016

73

