
Feng HU 2016 1

CSC212
Data Structure

- Section FG

Lecture	2
ADT	and	C++	Classes	(I)

Instructor:		Feng	HU
Department	of	Computer	Science	

City	College	of	New	York

Feng HU 2016 2

Outline

A	Review	of	C++	Classes	(Lecture	2)
• OOP,	ADTs	and	Classes
• Class	Definition,	Implementation	and	Use
• Constructors	and	Value	Semantics
More	on	Classes	(Lecture	3)
• Namespace	and	Documentation
• Classes	and	Parameters
• Operator	Overloading

Feng HU 2016 3

Object	Oriented	Programming

•Chapter	2	introduces	Object	Oriented	Programming.

•OOP	is	the	typical	approach	to	programming	which	
supports	the	creation	of	new	data	types	and	operations	
to	manipulate	those	types.

• This	lecture	gives	a	review	of	C++	Classes	and	
introduces	ADTs.

Feng HU 2016 4

C++	Classes	and	ADTs

• Class
• Mechanism	to	create	objects	and	member	functions
• Support	 information	hiding

• Abstract	Date	Types	(ADTs)
• mathematical	data	type
• Class	as	an	ADT	that	programmers	can	use	without	knowing	how	the	
member	 functions	are	implemented	 	- i.e.	with	information	hiding

Feng HU 2016 5

A	point ADT

• A	data	type	to	store	and	
manipulate	a	single	point	on	a	
plane

• Manipulations
• Initialize
• Retrieval
• Shift	

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

p1

Feng HU 2016 6

A	point ADT

• A	data	type	to	store	and	
manipulate	a	single	point	on	a	
plane

• Manipulations
• Initialize
• Retrieval	coordinates
• Shift	

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

p1

(-1, 0.8)

Feng HU 2016 7

A	point ADT

• A	data	type	to	store	and	
manipulate	a	single	point	on	a	
plane

• Manipulations
• Initialize
• Retrieval	coordinates
• Shift	

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

0.8

-1.0

p1

Feng HU 2016 8

A	point ADT

• A	data	type	to	store	and	
manipulate	a	single	point	on	a	
plane

• Manipulations
• Initialize
• Retrieval	coordinates
• Shift	 	by

x

-2 -1 0 1 2

2

1

0

-1

- 2

y

(0.3, -0.6)
(1.3, -1.4)

p2

p1

Feng HU 2016 9

Outline

A	Review	of	C++	Classes	(Lecture	2)
• OOP,	ADTs	and	Classes
• Class	Definition,	Implementation	and	Use
• Constructors	and	Value	Semantics
More	on	Classes	(Lecture	3)
• Namespace	and	Documentation
• Classes	and	Parameters
• Operator	Overloading

Feng HU 2016 10

point Definition

• We	can	implement	the	point
object	using	a	data	type	called	a	
class.

class point
{

. . .

};

Don’t forget the
semicolon at the end

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 11

point Definition

• The	class	will	have	two	
components	called	x	and	y.		
These	components	are	the	x	and	
y	coordinates	of	this	point.

• Using	a	class	permits	two	new	
features	 .	.	.

class point
{

. . .
double x;
double y;

};

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 12

point Definition

➊ The	two	components	will	be	
private	member	variables.		
This	ensures	that	nobody	can	
directly	access	this	
information.		The	only	access	
is	through	functions	that	we	
provide	for	the	class.

class point
{

. . .
private:

double x;
double y;

};

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 13

point Definition

➋ In	a	class,	the	functions	which	
manipulate	the	class	are	also	
listed.

class point
{
public:

. . .
private:

double x;
double y;

};Prototypes for the point
functions go here,
after the word public:

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 14

point Definition

➋ In	a	class,	the	functions	which	
manipulate	the	class	are	also	
listed.

class point
{
public:

. . .
private:

double x;
double y;

};Prototypes for the point
member functions go
here

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 15

point Definition

class point
{
public:

void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

Our point has at least four member functions:

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 16

point Definition

class point
{
public:

void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

The keyword const appears after two prototypes:

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 17

Files	for	the	point ADT

• The	point class	definition,	which	we	
have	just	seen,	is	placed	with	
documentation	in	a	file	called	
point.h,	outlined	here.

• The	implementations	of	the																																						
four	member	functions	will	be	
placed	in	a	separate	file	called	
point.cxx,	which	we	will	examine	in	
a	few	minutes.

Documentation:
(Preconditions and

Postconditions)

Class definition:
•point class
definition which we
have already seen

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 18

Outline

A	Review	of	C++	Classes	(Lecture	2)
• OOP,	ADTs	and	Classes
• Class	Definition,	Implementation	and	Use
• Constructors	and	Value	Semantics
More	on	Classes	(Lecture	3)
• Namespace	and	Documentation
• Classes	and	Parameters
• Operator	Overloading

Feng HU 2016 19

Using	the	point ADT

• A	program	that	wants	
to	use	the	point ADT	
must	include the	
point.h	header	file	
(along	with	its	other	
header	inclusions).

• File	pointmain1.cxx

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

...

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 20

Using	the	point ADT

• Just	for	illustration,	the	
example	program	will	
declare	two	point
variables	named	p1	and	
p2.

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1;
point p2;

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 21

Using	the	point ADT

• Just	for	illustration,	the	
example	program	will	
declare	two	pointobjects
named	p1	and	p2.

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1;
point p2;

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 22

Using	the	point ADT

• The	program	starts	by					
calling	the					initialize	
member	function	for	
p1.

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1;
point p2;
p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 23

Using	the	point ADT

• The	program	starts	by					
activating the					
initialize	member	
function	for	p1.

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1:
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 24

Using	the	point ADT

➊The	member	function	
activation	consists	of	
four	parts,	starting	with	
the	object	name. int main()

{
point p1;
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 25

Using	the	point ADT

➋The	instance		(object)	
name	is	followed	by	a	
period.

int main()
{

point p1;
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 26

Using	the	point ADT

➌After	the	period	is	the	
name	of	the	member	
function	that	you	are	
activating. int main() {

point p1;
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 27

Using	the	point ADT

➍Finally,	the	arguments	
for	the	member	
function.		In	this	
example	the	first	
argument	(x	coordinate)	
and	the	second	
argument	(y	
coordinate)

int main() {
point p1;
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 28

A	Quiz

How would you
activate p1's get_x
member function ?

What would be the
output of p1's
get_x member
function at this
point in the
program ?

int main()
{

point p1;
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 29

A	Quiz

Notice	that	the	get_x
member	function	has	no	
arguments.

At	this	point,	activating	
p1.get_x will	return	a	
double	value

-1.0.

int main() {
point p1;
point p2;

p1.initialize(-1.0, 0.8);
cout << p1.get_x() <<endl;

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 30

A	Quiz

Trace through this
program, and tell
me the complete
output.

int main()
{

point p1;
point p2;

p1.initialize(-1.0, 0.8);
cout << p1.get_x() << p1.get_y() << endl;
p2.initialize(p1.get_x(), p1.get_y());
cout << p2.get_x() << p2.get_y() << endl;
p2.shift(1.3, -1.4);
cout << p2.get_x() << p2.get_y() << endl;

. . .

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 31

A	Quiz

-1.0 0.8
-1.0 0.8
0.3 -0.6

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

int main()
{

point p1;
point p2;

p1.initialize(-1.0, 0.8);
cout << p1.get_x() << p1.get_y() << endl;
p2.initialize(p1.get_x(), p1.get_y());
cout << p2.get_x() << p2.get_y() << endl;
p2.shift(1.3, -1.4);
cout << p2.get_x() << p2.get_y() << endl;

. . .

Feng HU 2016 32

What	you	know	about	Objects

✔Class	=	Data	+	Member	Functions.
✔You	know	how	to	define a	new	class	type,	and	place	
the	definition	in	a	header	file.
✔You	know	how	to	use the	header	file	in	a	program	
which	declares	instances	of	the	class	type.
✔You	know	how	to	activate member	functions.
✖But	you	still	need	to	learn	how	to	write the	bodies	of	
a	class’s	member	functions.

Feng HU 2016 33

Outline

A	Review	of	C++	Classes	(Lecture	2)
• OOP,	ADTs	and	Classes
• Class	Definition,	Implementation and	Use
• Constructors	and	Value	Semantics
More	on	Classes	(Lecture	3)
• Namespace	and	Documentation
• Classes	and	Parameters
• Operator	Overloading

Feng HU 2016 34

point Implementation

Remember that the member function’s bodies
generally appear in a separate point.cxx file.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

class point
{
public:

void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

Feng HU 2016 35

point Implementation

We will look at the body of intialize, which must assign
its two arguments to the two private member variables.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

class point
{
public:

void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

Feng HU 2016 36

point Implementation

But	there	are	two	special	features	about	a	
member	function’s	body	.	.	.

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

For the most part, the function’s body is no different
than any other function body.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 37

point Implementation

➊In	the	heading,	the	function's	name	is	preceded	by	the	class	name	
and	::	- otherwise	C++	won't	realize	this	is	a	class’s	member	function.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

Feng HU 2016 38

point Implementation

➋Within	the	body	of	the	function,	the	class’s	member		variables	
and	other	member	functions	may	all	be	accessed.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

Feng HU 2016 39

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

point Implementation

➋Within	the	body	of	the	function,	the	class’s	member	variables	
and	other	member	functions	may	all	be	accessed.

But, whose member
variables are
these? Are they

p1.x
p1.y
p2.x
p2.y

?

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 40

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

point Implementation

➋Within	the	body	of	the	function,	the	class’s	member	variables	
and	other	member	functions	may	all	be	accessed.

If we activate
p1.initialize:

p1.x
p1.y

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 41

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

point Implementation

➋Within	the	body	of	the	function,	the	class’s	member	variables	
and	other	member	functions	may	all	be	accessed.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

If we activate
p2.initialize:

p2.x
p2.y

Feng HU 2016 42

point Implementation

Here	is	the	implementation	of	the	get_xmember	
function,	which	return	the	x	coordinate:

double point::get_x() const
{

return x;

}

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 43

point Implementation

Here	is	the	implementation	of	the	get_xmember	
function,	which	return	the	x	coordinate:

Notice how this member function implementation
uses the member variable x of the point object.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

double point::get_x() const
{

return x;

}

Feng HU 2016 44

point Implementation

Member	functions	may	activate	other	member	
functions

Notice this member function implementation still
directly assign the member variables x and y.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

void point::origin()
{

x = 0.0;
y = 0.0;

}

Feng HU 2016 45

point Implementation

Member	functions	may	activate	other	member	
functions

Notice how this member function implementation
uses the member function initialize.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

void point::origin()
{

initialize(0.0, 0.0);
}

Feng HU 2016 46

class point
{
public:

void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

A	Common	Pattern

•Often,	one	or	more	member	functions	will	
place	data	in	the	member	variables...

❐ ...so that other member functions may use that
data.

Initialize & shift get_x & get_y

Feng HU 2016 47

Summary	of	classes	

•Classes have	member	variables	and	member	
functions.	An	object is	a	variable	where	the	data	type	
is	a	class.

• You	should	know	how	to	declare a	new	class	type,	
how	to	implement its	member	functions,	how	to	use
the	class	type.

• Frequently,	the	member	functions	of	an	class	type	
place	information	in	the	member	variables,	or	use	
information	that's	already	in	the	member	variables.

•Next	we	will	see	more	features	of	OOP	and	classes.

Feng HU 2016 48

Assignments	

• Reading:	
• Chapter	2.3-2.5

• Programming	assignment	1	- Due	Wed,	Sep.	16
• Need	all	of	chapter	2	to	finish,	but	you	can	start	doing	it	
now

• Requirements	and	guidelines	have	been	posted	on	the	
course	web	site

• C++	Installation	Guide	online
• Linux	Users:	See	the	assignment	#1	guidelines
• Mac/Win	Users:	Check	the	course	bulletin	(by	Wai Khoo)

Feng HU 2016 49

Break

Feng HU 2016 50

Outline

A	Review	of	C++	Classes	(Lecture	2)
• OOP,	ADTs	and	Classes
• Class	Definition,	Implementation	and	Use
• Constructors	and	Value	Semantics
More	on	Classes	(Lecture	3)
• Namespace	and	Documentation
• Classes	and	Parameters
• Operator	Overloading

Feng HU 2016 51

Constructors: point Initialization

• The	program	starts	by					
activating the					
initialize	member	
function	for	p1.

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1:
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

First improvement: automatic initialization
without activating the initialize function

Feng HU 2016 52

Constructors: point Initialization

class point
{
public:

void initialize(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

We can provide a normal member function initialize

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 53

Constructors: point Initialization

class point
{
public:

point(double init_x, double init_y);
void shift(double dx, double dy);
double get_x() const;
double get_y() const;

private:
double x;
double y;

};

Or use a constructor that is automatically called

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

-function name same as class name

- no return type, even no “void” !

Feng HU 2016 54

Constructors: Implementation

We	only	need	to	replace	initialize with	point

void point::initialize(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

For the most part, the constructor is no different
than any other member functions.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 55

Constructors: Implementation

But	there	are	three	special	features	about	constructor	.	
.	.

point::point(double init_x, double init_y)
{

x = init_x;
y = init_y;

}

For the most part, the constructor is no different
than any other member functions.

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Feng HU 2016 56

Constructors

• Constructor	is	a	member	function	which
• the	name	must	be	the	same	as	the	class	name
• automatically	called	whenever	a	variable	of	the	class	is	declared
• arguments	must	be	given	after	the	variable	name	(when	declared	in	user	
file)

• A	way	to	improve	the	initialize	function
• by	providing	 an	initialization	function	 that	is	guaranteed	to	be	called

Feng HU 2016 57

Constructors: point Initialization

• Automatically	called	
when	declared.

• Parameters	after	the	
object	names

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1:
point p2;

p1.initialize(-1.0, 0.8);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

First improvement: automatic initialization
without explicitly activating an initialize
function

Feng HU 2016 58

Constructors: point Initialization

• Automatically	called	
when	declared.

• Parameters	after	the	
object	names

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1(-1.0, 0.8):
point p2(0.3, 0.6);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

First improvement: automatic initialization
without explicitly activating an initialize
function

Feng HU 2016 59

Default	Constructors

• Automatically	called	
when	declared.

• Parameters	after	the	
object	names

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1(-1.0, 0.8):
point p2(0.3, 0.6);

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Sometime we want to define an object with
no parameters…

Feng HU 2016 60

Default	Constructors

• Automatically	called	
when	declared.

• NO	parameters	after	
the	object		name	p2

#include <iostream.h>
#include <stdlib.h>
#include “point.h"

int main()
{

point p1(-1.0, 0.8);
point p2;

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

…not even a pair of parentheses

Feng HU 2016 61

Default	Constructors

class point
{
public:

point();
point(double init_x, double init_y);
…

private:
double x;
double y;

};

We could provide a second constructor with no parameters

x

-2 -1 0 1 2

2
1
0
-1
-2

y

p

Implementation

point::point()
{

x = 0.0;
y = 0.0;

}

Feng HU 2016 62

Constructors:	Function	Overloading

• You	may	declare	as	many	constructors	as	you	like	– one	for	each	
different	way	of	initializing	an	object

• Each	constructor	must	have	a	distinct	parameter	list	so	that	the	
compiler	can	tell	them	part

• Question:	How	many	default	constructor	is	allowed?

Feng HU 2016 63

Constructors:	automatic	default	constructor

•What	happens	if	you	write	a	class	without	any	
constructors?

• The	compiler	automatically	creates	a	simple	default	
constructor
• which	only	calls	the	default	constructors	for	the	member	
variables	that	are	objects	of	some	other	classes

• Programming	Tip	:Always	provide	your	own	
constructors,	and	better	with	a	default	constructor

Feng HU 2016 64

Value	Semantics	of	a	Class

• Value	semantics	determines	how	values	are	copied	
from	one	object	to	another

• Consists	of	two	operations	in	C++
• The	assignment	operator
• The	copy	constructor

•Document	the	value	semantics
• When	you	implement	an	ADT,	the	document	should	
include	a	comment	indicating	that	the	value	semantics	is	
safe	to	use.

Feng HU 2016 65

Value	Semantics:	assignment	operator

• Automatic	assignment	operator
• For	a	new	class,	C++	normally	carries	out	assignment	by	
simply	copying	each	variable	from	the	object	on	the	right	
to	that	on	the	left

• our	new	class	point	can	use	automatic	assignment	
operator	

•When	automatic	assignment	fails
• we	will	see	examples	in	Lecture	4	(pointers	and	dynamic	
arrays)	

point p1(-1.0, 0.8), p2;

p2 = p1;

cout << p2.get_x() <<“ “ << p2.get_y();

Feng HU 2016 66

Value	Semantics:	copy	constructor

• A	copy	constructor
• is	a	constructor	with	exactly	one	parameter	whose	data	type	is	the	same	as	
the	constructor’s	class

• is	to	initialize	a	new	object	as	an	exact	copy	of	an	existing	object

• An	example	

point p1(-1.0, 0.8);

point p2 (p1);

cout << p2.get_x() <<“ “ << p2.get_y();

Feng HU 2016 67

Value	Semantics:	copy	constructor

• A	copy	constructor
• is	a	constructor	with	exactly	one	parameter	whose	data	type	is	the	same	as	
the	constructor’s	class

• is	to	initialize	a	new	object	as	an	exact	copy	of	an	existing	object

• An	alternative	syntax

point p1(-1.0, 0.8);

point p2 = p1;

cout << p2.get_x() <<“ “<< p2.get_y();

Feng HU 2016 68

Value	Semantics:	discussion

• point p2 = p1; versus		p2 = p1;
• The	assignment	p2 = p1; merely	copies	p1	to	the	already	
existing	object	p2	using	the	assignment	operator.	

• The	syntax	point p2 = p1; looks	like	an	assignment	
statement,	but	actually	a	declaration	that	both	declare	a	
new	object,	and	calls	the	copy	constructor to	initialize	p2	
as	a	copy	of	p1.

• p2	will	be	the	same	iff the	assignment	operator	and	
the	copy	constructor	do	the	same	things

Feng HU 2016 69

Copy	Constructor:	Implementation

• You	may	write	a	copy	constructor	much	like	any	
other	constructor
• Lecture	4	and	later

• Take	advantage	of	a	C++	feature
• automatic	copy	constructor
• similar	to	assignment,	the	automatic	copy	constructor	
initializes	a	new	object	by	merely	copy	all	the	member	
variables	from	the	existing	object.

• Automatic	versions	may	fail!

Point Demo

Feng HU 2016 70

Constructors,	etc.– a	summary

• Constructor	is	a	member	function
• define	your	own	constructors	(including	a	default)
• automatic	default	constructor

• inline	member	functions	(Ch	2.2)
• Place	a	function	definition	inside	the	class	definition
• for	time	efficiency

• value	semantics	of	a	class
• assignment	operators	and	copy	constructor
• automatic	assignment	op	and	copy	constructor

Feng HU 2016 71

Outline

A	Review	of	C++	Classes	(Lecture	2)
• OOP,	ADTs	and	Classes
• Class	Definition,	Implementation	and	Use
• Constructors	and	Value	Semantics
More	on	Classes	(Lecture	3)
• Namespace	and	Documentation
• Classes	and	Parameters
• Operator	Overloading

Feng HU 2016 72

Assignments	

• Reading:	
• Chapter	2.3-2.5

• Programming	assignment	1	- Due	Sep.	14
• Need	all	of	 chapter	2	to	finish,	but	you	can	start	doing	 it	now
• Requirements	and	guidelines	 will	be	posted	on	the	course	web	site

Feng HU 2016 73

THE END

Presentation copyright 1997, Addison Wesley Longman
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club
Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are
welcome to use this presentation however they see fit, so long as this copyright notice
remains intact.

The first part (p.3-47) of this lecture was adapted from:

