Exam Review 3

Chapters $10-13$, 15
CSC212 Section FG
CS Dept, CCNY

Trees and Traversals

- Tree, Binary Tree, Complete Binary Tree
- child, parent, sibling, root, leaf, ancestor,...
- Array Representation for Complete Binary Tree
- Difficult if not complete binary tree
- A Class of binary_tree_node
- each node with two link fields
- Tree Traversals
- recursive thinking makes things much easier
- A general Tree Traversal
- A Function as a parameter of another function

Binary Search Trees (BSTs)

- Binary search trees are a good implementation of data types such as sets, bags, and dictionaries.
- Searching for an item is generally quick since you move from the root to the item, without looking at many other items.
- Adding and deleting items is also quick.
- But as you'll see later, it is possible for the quickness to fail in some cases -- can you see why? (unbalanced)

Heaps

- Heap Definition
- A complete binary tree with a nice property
- Heap Applications
- priority queues (chapter 8), sorting (chapter 13)
- Two Heap Operations - add, remove
- reheapification upward and downward
- why is a heap good for implementing a priority queue?
- Heap Implementation
- using binary_tree_node class
- using fixed size or dynamic arrays

B-Trees

- A B-tree is a tree for sorting entries following the six rules
- B-Tree is balanced - every leaf in a B-tree has the same depth
- Adding, erasing and searching an item in a B-tree have worst-case time $\mathrm{O}(\log \mathrm{n})$, where n is the number of entries
- However the implementation of adding and erasing an item in a B-tree is not a trivial task.

Trees - Time Analysis

- Big-O Notation :
- Order of an algorithm versus input size (n)
- Worse Case Times for Tree Operations
$-\mathrm{O}(\mathrm{d}), \mathrm{d}=$ depth of the tree
- Time Analysis for BSTs
- worst case: $\mathrm{O}(\mathrm{n})$
- Time Analysis for Heaps
- worst case $\mathrm{O}(\log n)$
- Time Analysis for B-Trees
- worst case $\mathrm{O}(\log n)$
- Logarithms and Logarithmic Algorithms
- doubling the input only makes time increase a fixed number

Searching

- Applications
- Database, Internet, AI...
- Most Common Methods
- Serial Search - O(n)
- Binary Search - O(log n)
- Search by Hashing - O(k)
- Run-Time Analysis
- Average-time analysis
- Time analysis of recursive algorithms

Quadratic Sorting

- Both Selectionsort and Insertionsort have a worstcase time of $\mathrm{O}\left(\mathrm{n}^{2}\right)$, making them impractical for large arrays.
- But they are easy to program, easy to debug.
- Insertionsort also has good performance when the array is nearly sorted to begin with.
- But more sophisticated sorting algorithms are needed when good performance is needed in all cases for large arrays.

O(NlogN) Sorting

- Recursive Sorting Algorithms
- Divide and Conquer technique
- An O(NlogN) Heap Sorting Algorithm
- making use of the heap properties
- STL Sorting Functions
- C++ sort function
- Original C version of qsort

Graphs

- Examples/Applications
- Terminologies
- Directed graph, Undirected graph, Simple graph
- Representations
- Graph representation: adjacent matrix and edge list (how?)
- Graph Traversal

A problem

Using the binary_tree_node from page 481, write a recursive function to meet the following specification. Check as much of the precondition as possible.
template <class Item>
void flip(binary_tree_node<ltem>* root_ptr)
// Precondition: root_ptr is the root pointer of a non-empty binary tree.
// Postcondition: The tree is now the mirror image of its original value.
// Example original tree:
// 1
/I \quad I
// 23
// 455

32
/
Example new tree:
1
八

right

Preparation suggestions

- Key algorithms/analysis:
- Time complexity (worst, best, and average) of binary search, selectionsort, insertionsort, heap sort, and merge sort
- Mergesort code, Heap sort code, and Selectionsort code.
- Binary search code.
- How to build a hashtable, and how to solve collision.

Exam 3

Date: Dec. $12^{\text {th }}, 2016$
Time: 4:00pm - 5:30pm
Location: Shepard SH 75
Contents: mainly Ch 10-13, 15

