
Exam Review 3

Chapters 10 – 13, 15
CSC212 Section FG

CS Dept, CCNY

Trees and Traversals

• Tree, Binary Tree, Complete Binary Tree
– child, parent, sibling, root, leaf, ancestor,...

• Array Representation for Complete Binary Tree
– Difficult if not complete binary tree

• A Class of binary_tree_node
– each node with two link fields

• Tree Traversals
– recursive thinking makes things much easier

• A general Tree Traversal
– A Function as a parameter of another function

Binary Search Trees (BSTs)

• Binary search trees are a good implementation of
data types such as sets, bags, and dictionaries.

• Searching for an item is generally quick since you
move from the root to the item, without looking at
many other items.

• Adding and deleting items is also quick.
• But as you'll see later, it is possible for the

quickness to fail in some cases -- can you see why?
(unbalanced)

Heaps

• Heap Definition
– A complete binary tree with a nice property

• Heap Applications
– priority queues (chapter 8), sorting (chapter 13)

• Two Heap Operations – add, remove
– reheapification upward and downward
– why is a heap good for implementing a priority queue?

• Heap Implementation
– using binary_tree_node class
– using fixed size or dynamic arrays

B-Trees

• A B-tree is a tree for sorting entries following the
six rules

• B-Tree is balanced - every leaf in a B-tree has the
same depth

• Adding, erasing and searching an item in a B-tree
have worst-case time O(log n), where n is the
number of entries

• However the implementation of adding and
erasing an item in a B-tree is not a trivial task.

Trees - Time Analysis
• Big-O Notation :

– Order of an algorithm versus input size (n)
• Worse Case Times for Tree Operations

– O(d), d = depth of the tree
• Time Analysis for BSTs

– worst case: O(n)
• Time Analysis for Heaps

– worst case O(log n)
• Time Analysis for B-Trees

– worst case O(log n)
• Logarithms and Logarithmic Algorithms

– doubling the input only makes time increase a fixed number

Searching

• Applications
– Database, Internet, AI...

• Most Common Methods
– Serial Search – O(n)
– Binary Search – O(log n)
– Search by Hashing - O(k)

• Run-Time Analysis
– Average-time analysis
– Time analysis of recursive algorithms

Quadratic Sorting

• Both Selectionsort and Insertionsort have a worst-
case time of O(n2), making them impractical for
large arrays.

• But they are easy to program, easy to debug.
• Insertionsort also has good performance when the

array is nearly sorted to begin with.
• But more sophisticated sorting algorithms are

needed when good performance is needed in all
cases for large arrays.

O(NlogN) Sorting

• Recursive Sorting Algorithms
– Divide and Conquer technique

• An O(NlogN) Heap Sorting Algorithm
– making use of the heap properties

• STL Sorting Functions
– C++ sort function
– Original C version of qsort

Graphs

• Examples/Applications
• Terminologies

– Directed graph, Undirected graph, Simple graph

• Representations
– Graph representation: adjacent matrix and edge list

(how?)

• Graph Traversal

A problem

Using the binary_tree_node from page 481, write a recursive
function to meet the following specification. Check as much of the
precondition as possible.

template <class Item>
void flip(binary_tree_node<Item>* root_ptr)
// Precondition: root_ptr is the root pointer of a non-empty binary tree.
// Postcondition: The tree is now the mirror image of its original value.
// Example original tree: Example new tree:
// 1 1
// / \ / \
// 2 3 3 2
// / \ / \
// 4 5 5 4

//retrievals
data
left
right
//set
set_data
set_left
set_right
//boolean
is_leaf

Preparation suggestions
• Key algorithms/analysis:
• Time complexity (worst, best, and average) of binary search,

selectionsort, insertionsort, heap sort, and merge sort
• Mergesort code, Heap sort code, and Selectionsort code.
• Binary search code.
• How to build a hashtable, and how to solve collision.

Exam 3
Date: Dec. 12th, 2016
Time: 4:00pm – 5:30pm
Location: Shepard SH 75
Contents: mainly Ch 10-13, 15

