Exam Review 3

Chapters 10 – 13, 15 CSC212 Section FG CS Dept, CCNY

Trees and Traversals

- Tree, Binary Tree, Complete Binary Tree – child, parent, sibling, root, leaf, ancestor,...
- Array Representation for Complete Binary Tree
 Difficult if not complete binary tree
- A Class of binary_tree_node
 each node with two link fields
- Tree Traversals
 - recursive thinking makes things much easier
- A general Tree Traversal
 - A Function as a parameter of another function

Binary Search Trees (BSTs)

- Binary search trees are a good implementation of data types such as sets, bags, and dictionaries.
- Searching for an item is generally quick since you move from the root to the item, without looking at many other items.
- Adding and deleting items is also quick.
- But as you'll see later, it is possible for the quickness to fail in some cases -- can you see why? (unbalanced)

Heaps

- Heap Definition
 - A complete binary tree with a nice property
- Heap Applications
 - priority queues (chapter 8), sorting (chapter 13)
- Two Heap Operations add, remove
 - reheapification upward and downward
 - why is a heap good for implementing a priority queue?
- Heap Implementation
 - using binary_tree_node class
 - using fixed size or dynamic arrays

B-Trees

- A B-tree is a tree for sorting entries following the six rules
- B-Tree is balanced every leaf in a B-tree has the same depth
- Adding, erasing and searching an item in a B-tree have worst-case time O(log n), where n is the number of entries
- However the implementation of adding and erasing an item in a B-tree is not a trivial task.

Trees - Time Analysis

- Big-O Notation :
 - Order of an algorithm versus input size (n)
- Worse Case Times for Tree Operations
 O(d), d = depth of the tree
- Time Analysis for BSTs
 - worst case: O(n)
- Time Analysis for Heaps
 - worst case $O(\log n)$
- Time Analysis for B-Trees
 - worst case $O(\log n)$
- Logarithms and Logarithmic Algorithms
 - doubling the input only makes time increase a fixed number

Searching

- Applications
 - Database, Internet, AI...
- Most Common Methods
 - Serial Search O(n)
 - Binary Search $O(\log n)$
 - Search by Hashing O(k)
- Run-Time Analysis
 - Average-time analysis
 - Time analysis of recursive algorithms

Quadratic Sorting

- Both Selectionsort and Insertionsort have a worstcase time of O(n²), making them impractical for large arrays.
- But they are easy to program, easy to debug.
- Insertionsort also has good performance when the array is nearly sorted to begin with.
- But more sophisticated sorting algorithms are needed when good performance is needed in all cases for large arrays.

O(NlogN) Sorting

- Recursive Sorting Algorithms
 Divide and Conquer technique
- An O(NlogN) Heap Sorting Algorithm
 making use of the heap properties
- STL Sorting Functions
 - C++ sort function
 - Original C version of qsort

Graphs

- Examples/Applications
- Terminologies
 - Directed graph, Undirected graph, Simple graph
- Representations
 - Graph representation: adjacent matrix and edge list (how?)
- Graph Traversal

A problem

Using the **binary_tree_node** from page 481, write a recursive function to meet the following specification. Check as much of the precondition as possible.

template <class ltem>

void flip(binary_tree_node<ltem>* root_ptr)

// Precondition: root_ptr is the root pointer of a non-empty binary tree.
// Postcondition: The tree is now the mirror image of its original value.

Example new tree:

// Example original tree:

//	1	1
//	/ \	/ \
//	2 3	32
//	/ \	/ \
//	4 5	54

//retrievals data left right //set set data set left set right //boolean is leaf

Preparation suggestions

- Key algorithms/analysis:
 - Time complexity (worst, best, and average) of binary search, selectionsort, insertionsort, heap sort, and merge sort
 - Mergesort code, Heap sort code, and Selectionsort code.
 - Binary search code.
 - How to build a hashtable, and how to solve collision.

Exam 3

Date: Dec. 12th, 2016 Time: 4:00pm – 5:30pm Location: Shepard SH 75 Contents: mainly Ch 10-13, 15