
Exam Review 2

Chapter 5 – 9
CSC212 FG

CS Dept, CCNY

Chapter 5: Linked Lists

• Node Class (Ex 1-4, 6-9)
• Linked List Toolkit (Ex 10 -16)
• The bag Class with a Linked List (Ex 19-21,

23,24,26)
• The sequence class with a Linked List (Ex

27-30: please refer to assignment 4)
• Comparison of dynamic arrays, linked lists

and doubly linked lists (Ex 31-36)

Chapter 6: Templates, Iterators and STL

• Template Functions and Template Classes
– for code that is meant be reused in a variety of settings

in a single program
– Sections 6.1-6.2, Ex 1-3, 6-11

• Iterators (Sec. 6.5- 6.7, Ex 17-28)
– step through all items of a container in a standard

manner
• Standard Template Library (Section 6.3, Ex. 12-

16)
– the ANSI/ISO C++ Standard provides a variety of

container classes in the STL

All you need to know about
Templates

• Template Function (Ex. 1-3)
– a template prefix before the function implementation
– template <class Item1, class Item2, ...>

• Function Prototype
– a template prefix before the function prototypes

• Template Class (Ex. 6-10)
– a template prefix right before the class definition

• Instantiation (Ex 11)
– template functions/classes are instantiated when used

Better Understanding of classes and functions

Iterators (Sec. 6.5- 6.7, Ex 17-28)

• We discussed how to build an iterator for
the linked list

• so that each of the containers can build its
own iterator(s) easily

• A node iterator is an object of the
node_iterator class, and can step through the
nodes of the linked list

Linked List Version the bag
Template Class with an Iterator

• Most of the implementation of this new bag
is a straightforward translation of the bag in
Chapter 5 that used an ordinary linked list

• Two new features
– Template class with a underlying type Item
– iterator and const_iterator – defined from

node_iterator and const_node_iterator, but use
the C++ standard [...) left inclusive pattern

Standard Template Library (STL)

• The ANSI/ISO C++ Standard provides a
variety of container classes in the STL
– set, multiset, stack, queue, string, vector

• Featured templates and iterators
• For example, the multiset template class is

similar to our bag template class
• More classes summarized in Appendix H

Chapters 7/8 Stacks and Queues

• Stacks and LIFO(Read Chapter 7, esp. 7.1 and 7.3)
– Self-Test: 1, 2, 7, 8, 9, 10,

• Queues and FIFO (Read Chapter 8, esp. 8.1 and 8.3)
– Self-Test: 1, 2, 6,10, 11,12

• Priority Queues (Read Section 8.4)
– Self-Test: 16, 17

• References Return Values (Read Section 8.5 and p.
302 in Chapter 6)
– Self-Test: class note of Lecture 12

Chapter 9 Recursive Thinking

• Recursive Functions (Section 9.1)
– Recursive Calls and Stopping Cases
– Activation Record and Run-Time Stack
– Self-Test: Exercises 1-4

• Reasoning about Recursion (Section 9.3)
– Infinite Recursion and One Level Recursion
– Ensure no Infinite and Correctness
– Ex. 9, 10 on page 448

• Applications of Recursion (Optional :Section 9.2)

A quiz on queue

• Implement
– queue
– push
– pop
– front

• Check pre-
conditions if
needed

template <class Item>
class queue
{
public:

// TYPEDEFS and MEMBER CONSTANTS
typedef std::size_t size_type;
typedef Item value_type;
static const size_type CAPACITY = 30;
// CONSTRUCTOR
queue();
// MODIFICATION MEMBER FUNCTIONS
void push(const Item& entry);
void pop();
// CONSTANT MEMBER FUNCTIONS
Item front() const;
bool empty() const { return (count == 0); }
size_type size() const { return count; }

private:
Item data[CAPACITY]; // Circular array
size_type first; // Index of item at front of the queue
size_type last; // Index of item at rear of the queue
size_type count; // Total number of items in the queue
// HELPER MEMBER FUNCTION
size_type next_index(size_type i) const

{ return (i+1) % CAPACITY; }
};

A few suggestions for
preparation

• Make sure you understand each line of your assignments 4
(including node.cxx).

• Make sure you understand the two implementation files for
both stack and queue.

• Key concepts: circular array; front_ptr/rear_ptr for queue;
precuror; template classes/functions

• Exercise recursive thinking, e.g. with Assignment 5; be
able to write recursive code for small problem (or printing
digits vertically example code)

• Be able to write code with queue/stack for small
problem(parenthesis balancing code);

Exam 2

• Nov 07, 2016, from 4:00 to 5:30 pm

